Loading...

cpy pst prnt kybrd kys rght clk dslb

ad banner

Field Effect Transistor, biasing JFET, depletion and enhancement mode, MOSFET, FET amplifier | MCQs

Field Effect Transistor, biasing 
JFET, depletion and enhancement mode, MOSFET, FET amplifier

10 questions on each with explained answers

## Field Effect Transistor (FET)

**1. FET is a device?**  
a) Bipolar  
b) Unipolar  
c) Current controlled  
d) Voltage amplifier only  
**Answer: b) Unipolar** [1]
**Explanation: FET conducts via majority carriers only, unlike BJT's both types. [1]

**2. FET input impedance range?**  
a) Low ohms  
b) Megaohms  
c) Kiloohms  
d) Infinite  
**Answer: b) Megaohms** [1]
**Explanation:** Gate insulated from channel prevents DC current flow. [1]

**3. FET control mechanism?**  
a) Current  
b) Voltage  
c) Power  
d) Resistance  
**Answer: b) Voltage** [2]
**Explanation:** Gate-source voltage modulates channel conductivity. [2]

**4. JFET noise compared to BJT?**  
a) Higher  
b) Lower  
c) Equal  
d) None  
**Answer: b) Lower** [1]
**Explanation:** No junction injection reduces noise generation. [1]

**5. FET thermal stability?**  
a) Poor like BJT  
b) Better, no runaway  
c) Worse  
d) Equal  
**Answer: b) Better, no runaway** [1]
**Explanation:** Majority carrier operation avoids thermal instability. [1]

**6. Radiation resistance of FET?**  
a) Low  
b) High  
c) Same as BJT  
d) Zero  
**Answer: b) High** [1]
**Explanation:** Structure tolerates radiation better than BJTs. [1]

**7. FET gain type?**  
a) High transconductance  
b) Lower than BJT  
c) Infinite  
d) Zero  
**Answer: b) Lower than BJT** [1]
**Explanation:** Lower gm limits voltage/current amplification. [1]

**8. JFET terminals?**  
a) 2  
b) 3: source, drain, gate  
c) 4  
d) 1  
**Answer: b) 3: source, drain, gate** [3]
**Explanation:** Gate reverse-biased controls channel current. [3]

**9. Channel in JFET?**  
a) Enhanced by gate  
b) Depleted by gate voltage  
c) Fixed  
d) Absent  
**Answer: b) Depleted by gate voltage** [3]
**Explanation:** Vgs widens depletion region, narrowing conduction path. [3]

**10. FET input resistance?**  
a) Low  
b) Very high  
c) Medium  
d) Variable only  
**Answer: b) Very high** [3]
**Explanation:** Reverse-biased gate draws negligible current. [3]

## FET Biasing

**1. Purpose of FET biasing?**  
a) Distortion increase  
b) Set Q-point, reduce distortion  
c) Maximum power  
d) Minimum current  
**Answer: b) Set Q-point, reduce distortion** [4]
**Explanation:** Establishes stable operating point for linear operation. [4]

**2. Fixed bias uses?**  
a) Source resistor  
b) Gate battery Vgg  
c) Divider  
d) Current source  
**Answer: b) Gate battery Vgg** [5]
**Explanation:** Vgg reverse biases gate, Ig=0 through Rg. [5]

**3. Self bias advantage?**  
a) Unstable  
b) Stabilizes Id via Rs  
c) High power  
d) Complex  
**Answer: b) Stabilizes Id via Rs** [5]
**Explanation:** Vgs = -Id Rs provides negative feedback. [5]

**4. Potential divider bias?**  
a) Single resistor  
b) Two gate resistors  
c) Battery only  
d) No resistors  
**Answer: b) Two gate resistors** [5]
**Explanation:** Sets Vg independent of Id variations. [5]

**5. Current-source bias uses?**  
a) BJT constant current  
b) Low Vdd compensation  
c) Fixed voltage  
d) No source resistor  
**Answer: a) BJT constant current** [5]
**Explanation:** BJT forces fixed Id through JFET. [5]

**6. Thermal runaway in FET?**  
a) Common  
b) Does not occur  
c) Worse than BJT  
d) Only n-channel  
**Answer: b) Does not occur** [5]
**Explanation:** No minority carrier multiplication. [5]

**7. Biasing reduces?**  
a) Dynamic range  
b) Distortion, improves range  
c) Gain  
d) Impedance  
**Answer: b) Distortion, improves range** [4]
**Explanation:** Fixed Q-point linearizes transfer curve. [4]

**8. Rg in fixed bias?**  
a) Provides Vgs  
b) AC signal path  
c) DC block  
d) Load  
**Answer: b) AC signal path** [5]
**Explanation:** Zero DC drop allows coupling capacitor signals. [5]

**9. Source resistor feedback?**  
a) Positive  
b) Negative for stability  
c) Zero  
d) AC only  
**Answer: b) Negative for stability** [5]
**Explanation:** Id increase raises Vgs negative, reducing Id. [5]

**10. Best bias for variation tolerance?**  
a) Fixed  
b) Self or divider  
c) None  
d) Current source only  
**Answer: b) Self or divider** [5]
**Explanation:** Compensates parameter spreads unlike fixed bias. [5]

## JFET

**1. JFET channel type?**  
a) Induced  
b) Pre-existing, depleted  
c) Enhanced  
d) Absent  
**Answer: b) Pre-existing, depleted** [1]
**Explanation:** N-channel or P-channel doped initially. [1]

**2. JFET pinch-off voltage?**  
a) Vgs=0  
b) Vgs where Id=0  
c) Vds sat  
d) Vdd  
**Answer: b) Vgs where Id=0** [1]
**Explanation:** Maximum reverse Vgs closes channel. [1]

**3. JFET operation region?**  
a) Saturation only  
b) Ohmic and saturation  
c) Cutoff always  
d) Linear only  
**Answer: b) Ohmic and saturation** [1]
**Explanation:** Vds low: resistor; high: constant Id. [1]

**4. Gate current in JFET?**  
a) High  
b) Negligible reverse leakage  
c) Forward  
d) Equal Id  
**Answer: b) Negligible reverse leakage** [1]
**Explanation:** Reverse-biased PN junction. [1]

**5. JFET transconductance?**  
a) High like BJT  
b) Lower  
c) Infinite  
d) Zero  
**Answer: b) Lower** [1]
**Explanation:** gm = dId/dVgs smaller than BJT hfe. [1]

**6. N-channel JFET Vgs?**  
a) Positive  
b) Negative or zero  
c) AC only  
d) Positive high  
**Answer: b) Negative or zero** [3]
**Explanation:** Depletes n-channel with negative gate. [3]

**7. JFET application?**  
a) Low impedance only  
b) High Z amplifiers, RF  
c) Power only  
d) Digital  
**Answer: b) High Z amplifiers, RF** [1]
**Explanation:** Suits buffer, preamp stages. [1]

**8. Transfer curve JFET?**  
a) Linear  
b) Parabolic Id vs Vgs  
c) Exponential  
d) Step  
**Answer: b) Parabolic Id vs Vgs** [3]
**Explanation:** Channel width squared effect. [3]

**9. Maximum Id at?**  
a) Vgs= Vp  
b) Vgs=0  
c) Vgs positive  
d) Vds=0  
**Answer: b) Vgs=0** [1]
**Explanation:** Full channel width. [1]

**10. JFET symbol gate?**  
a) Arrow out  
b) Arrow in for N-ch  
c) No arrow  
d) Circle  
**Answer: b) Arrow in for N-ch** [3]
**Explanation:** Indicates channel type convention. [3]

## Depletion and Enhancement Mode

**1. Depletion MOSFET channel?**  
a) Absent initially  
b) Pre-doped, conducts Vgs=0  
c) Induced only  
d) N-type only  
**Answer: b) Pre-doped, conducts Vgs=0** [6]
**Explanation:** Like JFET, channel exists without gate voltage. [6]

**2. Enhancement MOSFET channel?**  
a) Pre-exists  
b) Formed by positive Vgs  
c) Depleted  
d) Fixed  
**Answer: b) Formed by positive Vgs** [6]
**Explanation:** Vgs exceeds threshold induces carriers. [6]

**3. Depletion mode Vgs range?**  
a) Positive only  
b) Both positive/negative  
c) Zero only  
d) Negative only  
**Answer: b) Both positive/negative** [6]
**Explanation:** Can enhance or deplete channel. [6]

**4. Enhancement Vgs for conduction?**  
a) Zero  
b) Above Vth  
c) Below Vth  
d) Negative  
**Answer: b) Above Vth** [7]
**Explanation:** No channel until threshold reached. [7]

**5. Depletion gate voltage effect?**  
a) Increases conduction  
b) Decreases conductivity  
c) No effect  
d) Off only  
**Answer: b) Decreases conductivity** [7]
**Explanation:** Positive/negative Vgs widens depletion. [7]

**6. Enhancement off-state?**  
a) Vgs=0  
b) Vgs high  
c) Vds high  
d) Always on  
**Answer: a) Vgs=0** [6]
**Explanation:** No inversion layer forms. [6]

**7. MOSFET types work modes?**  
a) Depletion both modes  
b) Enhancement depletion only  
c) Both one mode  
d) None  
**Answer: a) Depletion both modes** [6]
**Explanation:** Dual operation capability. [6]

**8. Channel construction in enhancement?**  
a) Doped  
b) Gate voltage induced  
c) Permanent  
d) External  
**Answer: b) Gate voltage induced** [7]
**Explanation:** Inversion layer under gate oxide. [7]

**9. Depletion Id at Vgs=0?**  
a) Zero  
b) Maximum  
c) Minimum  
d) Negative  
**Answer: b) Maximum** [6]
**Explanation:** Full channel available. [6]

**10. Threshold voltage enhancement?**  
a) Negative  
b) Positive for N-ch  
c) Zero  
d) Variable only  
**Answer: b) Positive for N-ch** [2]
**Explanation:** Required to bend bands for inversion. [2]

## MOSFET

**1. MOSFET full form?**  
a) Metal Oxide Semiconductor FET  
b) Junction FET  
c) Bipolar FET  
d) Current FET  
**Answer: a) Metal Oxide Semiconductor FET** [2]
**Explanation:** Gate oxide insulates control terminal. [2]

**2. MOSFET regions?**  
a) 2  
b) 3: cutoff, triode, saturation  
c) 4  
d) 1  
**Answer: b) 3: cutoff, triode, saturation** [8]
**Explanation:** Analogous to BJT but voltage controlled. [8]

**3. N-MOSFET Vds negative?**  
a) Active  
b) Inactive/ohmic  
c) Saturation  
d) Cutoff  
**Answer: b) Inactive/ohmic** [8]
**Explanation:** Reverse polarity blocks conduction. [8]

**4. Linear resistor MOSFET region?**  
a) Saturation  
b) Triode  
c) Cutoff  
d) All  
**Answer: b) Triode** [8]
**Explanation:** Vds << Vgs-Vth acts as resistor. [8]

**5. Linear amplifier region?**  
a) Triode  
b) Saturation  
c) Cutoff  
d) Ohmic  
**Answer: b) Saturation** [8]
**Explanation:** Constant Id for voltage gain. [8]

**6. MOSFET input impedance?**  
a) Low  
b) Very high  
c) Medium  
d) Zero  
**Answer: b) Very high** [2]
**Explanation:** Insulated gate draws no current. [2]

**7. Temperature coefficient MOSFET?**  
a) Negative  
b) Positive  
c) Zero  
d) Variable  
**Answer: b) Positive** [8]
**Explanation:** Reduces thermal runaway risk. [8]

**8. Minority carriers in MOSFET?**  
a) Present  
b) Absent  
c) Dominant  
d) Equal  
**Answer: b) Absent** [8]
**Explanation:** Unipolar majority carrier device. [8]

**9. I-V MOSFET vs BJT?**  
a) Linear both  
b) Quadratic Vgs MOSFET  
c) Exponential both  
d) Same  
**Answer: b) Quadratic Vgs MOSFET** [8]
**Explanation:** Id ∝ (Vgs-Vth)^2 in saturation. [8]

**10. MOSFET on-state?**  
a) High resistance  
b) Low resistance  
c) Infinite  
d) Zero current  
**Answer: b) Low resistance** [8]
**Explanation:** Fully enhanced channel. [8]

## FET Amplifier

**1. Common source like?**  
a) Common emitter  
b) High Z in, voltage gain  
c) Buffer  
d) Current amp  
**Answer: b) High Z in, voltage gain** [9]
**Explanation:** Most common FET amplifier type. [9]

**2. FET amp advantage?**  
a) Low Z  
b) High input Z, low noise  
c) High power  
d) Complex  
**Answer: b) High input Z, low noise** [9]
**Explanation:** Minimal loading, IC compatible. [9]

**3. Common drain configuration?**  
a) Voltage gain high  
b) Unity gain buffer  
c) Phase invert  
d) Low Z out  
**Answer: b) Unity gain buffer** [9]
**Explanation:** Emitter follower equivalent. [9]

**4. Input capacitance CS amp?**  
a) Cgs only  
b) Cgs + Cgd(1+Av) Miller  
c) Zero  
d) Infinite  
**Answer: b) Cgs + Cgd(1+Av) Miller** [9]
**Explanation:** Feedback capacitance multiplied. [9]

**5. Common gate use?**  
a) High freq, impedance match  
b) Voltage amp  
c) Buffer  
d) Low Z in  
**Answer: a) High freq, impedance match** [9]
**Explanation:** Low input Z to high output Z. [9]

**6. CS output phase?**  
a) In-phase  
b) 180° shift  
c) 90°  
d) None  
**Answer: b) 180° shift** [9]
**Explanation:** Like CE, Vd falls as Vg rises. [9]

**7. FET amp power consumption?**  
a) High gate current  
b) Low, no gate DC path  
c) Equal BJT  
d) Maximum  
**Answer: b) Low, no gate DC path** [9]
**Explanation:** Ig ≈ 0 ideally. [9]

**8. Cascode advantage?**  
a) Low gain  
b) High freq, Miller reduction  
c) Buffer  
d) Simple  
**Answer: b) High freq, Miller reduction** [9]
**Explanation:** Common gate isolates feedback. [9]

**9. Rout CS MOSFET amp?**  
a) Low  
b) ro || RD  
c) Infinite  
d) Zero  
**Answer: b) ro || RD** [9]  
**Explanation:** Drain degeneration none assumed. [9]

**10. Ideal max voltage common drain?**  
a) 0  
b) 1  
c) 0.5  
d) 2  
**Answer: b) 1** [10]
**Explanation:** Voltage follower gain approaches unity. [10]
Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.