Loading...

cpy pst prnt kybrd kys rght clk dslb

ad banner

Gain frequency response, Input and output impedance. Feedback in amplifiers; Negative feedback and Stability | MCQs

gain frequency response, input and output impedance. Feedback in amplifiers; 
negative feedback and stability.

10 questions on each with explained answers

## Gain and Frequency Response

**1. Midband gain region defined by?**  
a) Low frequencies only  
b) Constant gain where capacitors short, Cstray open  
c) High frequencies  
d) Cutoff only  
**Answer: b) Constant gain where capacitors short, Cstray open** [1]
**Explanation:** Coupling/bypass capacitors act as shorts, transistor/stray capacitances negligible, yielding maximum flat gain. [1]

**2. Low frequency roll-off caused by?**  
a) Stray capacitance  
b) High XC of coupling/bypass capacitors  
c) Miller effect  
d) Transconductance drop  
**Answer: b) High XC of coupling/bypass capacitors** [1]
**Explanation:** XC = 1/(2Ï€fC) high at low f reduces signal transfer, gain drops -20dB/decade per pole. [1]

**3. High frequency -3dB point determined by?**  
a) Coupling capacitors  
b) fH where gain drops 3dB from midband  
c) DC bias  
d) Load resistance  
**Answer: b) fH where gain drops 3dB from midband** [1]
**Explanation:** Marks bandwidth limit, typically Miller capacitance dominant. [1]

**4. Bandwidth defined as?**  
a) fH only  
b) fH - fL  
c) Midband gain  
d) Gain-bandwidth product  
**Answer: b) fH - fL** [1]
**Explanation:** Frequency range where gain within 3dB of maximum. [1]

**5. Miller capacitance effect?**  
a) Reduces at high f  
b) Multiplies Cgd by (1 + Av)  
c) Low frequency only  
d) No effect  
**Answer: b) Multiplies Cgd by (1 + Av)** [7]
**Explanation:** Feedback capacitance amplified by voltage gain lowers input pole frequency. [7]

**6. Gain drops -20dB/decade means?**  
a) Single pole roll-off  
b) Two poles  
c) Flat response  
d) Oscillation  
**Answer: a) Single pole roll-off** [7]
**Explanation:** Each RC pole contributes 6dB/octave or 20dB/decade phase/gain slope. [7]

**7. At high frequencies, base current increases due to?**  
a) Low XC of Cbe junction  
b) Coupling capacitor  
c) RE bypass  
d) RC load  
**Answer: a) Low XC of Cbe junction** [3]
**Explanation:** Shunts signal to ground, reducing β and gain. [3]

**8. Gain-bandwidth product constant for?**  
a) All amplifiers  
b) Op-amps, fT = Av * BW  
c) Power amps only  
d) Class A  
**Answer: b) Op-amps, fT = Av * BW** [5]
**Explanation:** Unity gain frequency limits closed-loop bandwidth. [5]

**9. Phase shift at cutoff frequency?**  
a) 0°  
b) 45° for single pole  
c) 90°  
d) 180°  
**Answer: b) 45° for single pole** [7]
**Explanation:** RC network phase φ = tan⁻¹(f/fc) = 45° at fc. [7]

**10. Dominant pole usually from?**  
a) Output stage Miller  
b) Input coupling  
c) Bypass capacitor  
d) Load  
**Answer: a) Output stage Miller** [7]
**Explanation:** Lowest frequency pole sets overall bandwidth. [7]

## Input and Output Impedance

**1. CE amplifier input impedance?**  
a) Very high  
b) Low, ≈ β re  
c) Infinite  
d) RL  
**Answer: b) Low, ≈ β re** [11]
**Explanation:** Base-emitter junction forward biased, rπ = β/gm. [11]

**2. Common collector Zin?**  
a) Low  
b) Very high, β (RE || RL)  
c) Medium  
d) Zero  
**Answer: b) Very high, β (RE || RL)** [12]  
**Explanation:** Emitter degeneration multiplies base impedance. [12]

**3. Output impedance CE high due to?**  
a) Low re  
b) Early effect, rce high  
c) RE feedback  
d) Coupling C  
**Answer: b) Early effect, rce high** [11]
**Explanation:** Collector resistance dominates without emitter degeneration. [11]

**4. Negative feedback effect on Zi?**  
a) Decreases  
b) Increases for series-shunt  
c) No change  
d) Infinite  
**Answer: b) Increases for series-shunt** [13]
**Explanation:** Voltage sampling, current mixing raises input resistance. [13]

**5. Common base Zin low because?**  
a) Emitter forward bias  
b) High β  
c) Collector grounded  
d) RE  
**Answer: a) Emitter forward bias** [12]
**Explanation:** ≈ re ≈ 25mV/IE, tens of ohms. [12]

**6. Zo decreases with?**  
a) Shunt feedback  
b) Series feedback  
c) No feedback  
d) Open loop  
**Answer: a) Shunt feedback** [13]
**Explanation:** Current sampling lowers output resistance. [13]

**7. Emitter degeneration increases?**  
a) Zi and Zo  
b) Only gain  
c) Stability only  
d) Distortion  
**Answer: a) Zi and Zo** [11]
**Explanation:** RE feedback raises both impedances. [11]

**8. FET CS amplifier Zi?**  
a) Low  
b) Very high, gate insulated  
c) β ro  
d) RD  
**Answer: b) Very high, gate insulated** [14]
**Explanation:** Ig ≈ 0, megaohms typical. [14]

**9. Buffer amplifier purpose?**  
a) High gain  
b) High Zi, low Zo matching  
c) Phase shift  
d) Filtering  
**Answer: b) High Zi, low Zo matching** [12]
**Explanation:** CC configuration ideal interface. [12]

**10. Loading effect minimized by?**  
a) High Zin amp  
b) Low Zo source  
c) Both  
d) None  
**Answer: c) Both** [11]
**Explanation:** Zin >> Zsource, Zload >> Zo prevents gain loss. [11]

## Feedback in Amplifiers

**1. Feedback topology classified by?**  
a) Gain type only  
b) Mixing (series/shunt) and sampling (series/shunt)  
c) Frequency  
d) Class  
**Answer: b) Mixing (series/shunt) and sampling (series/shunt)** [13]
**Explanation:** Determines Zi, Zo, gain type changes. [13]

**2. Negative feedback samples?**  
a) Inverted output  
b) Output subtracted from input  
c) Added to input  
d) No sampling  
**Answer: b) Output subtracted from input** [13]
**Explanation:** Error = Vin - β Vout drives correction. [13]

**3. Advantages of negative feedback?**  
a) Increases distortion  
b) Reduces distortion, stabilizes gain  
c) Low bandwidth  
d) High noise  
**Answer: b) Reduces distortion, stabilizes gain** [13]
**Explanation:** Loop gain >>1 linearizes response. [13]

**4. Series-shunt feedback is?**  
a) Transresistance  
b) Voltage amplifier  
c) Current  
d) Power  
**Answer: b) Voltage amplifier** [13]
**Explanation:** Voltage mixing/sampling, high Zi low Zo. [13]

**5. Loop gain Aβ represents?**  
a) Closed loop gain  
b) Open loop gain times feedback fraction  
c) Distortion  
d) Phase  
**Answer: b) Open loop gain times feedback fraction** [13]
**Explanation:** Determines desensitization factor 1/(1+Aβ). [13]

**6. Feedback reduces?**  
a) Bandwidth  
b) Increases BW by 1+Aβ  
c) Gain infinite  
d) Noise only  
**Answer: b) Increases BW by 1+Aβ** [13]
**Explanation:** Trades gain for extended frequency range. [13]

**7. Shunt-shunt feedback topology?**  
a) Voltage  
b) Transresistance amp  
c) Current  
d) Buffer  
**Answer: b) Transresistance amp** [13]
**Explanation:** Current mixing, voltage sampling. [13]

**8. Positive feedback causes?**  
a) Stability  
b) Oscillation if Aβ=1, 0°/360° phase  
c) Gain reduction  
d) Distortion reduction  
**Answer: b) Oscillation if Aβ=1, 0°/360° phase** [13]
**Explanation:** Barkhausen criteria for sustained oscillation. [13]

**9. Desensitivity factor?**  
a) 1 + Aβ  
b) Gain increase  
c) Distortion multiplier  
d) BW reduction  
**Answer: a) 1 + Aβ** [13]
**Explanation:** Closed-loop gain = Aol/(1+Aβ) ≈ 1/β. [13]

**10. Emitter degeneration example of?**  
a) Shunt-series  
b) Series-series current feedback  
c) Voltage  
d) No feedback  
**Answer: b) Series-series current feedback** [11]
**Explanation:** Senses Ie, mixes with input series. [11]

## Negative Feedback and Stability

**1. Stability determined by?**  
a) Gain only  
b) Phase margin >45°, gain margin >6dB  
c) Distortion  
d) BW  
**Answer: b) Phase margin >45°, gain margin >6dB** [4]
**Explanation:** Prevents oscillation in closed loop. [4]

**2. Nyquist stability criterion?**  
a) Gain >1 at 180°  
b) Encircles -1 point indicates instability  
c) Phase 0°  
d) BW infinite  
**Answer: b) Encircles -1 point indicates instability** [4]
**Explanation:** Plots Aβ vs frequency encircling critical point unstable. [4]

**3. Phase margin definition?**  
a) Gain at 180°  
b) Phase from -180° when |Aβ|=1  
c) BW  
d) Distortion  
**Answer: b) Phase from -180° when |Aβ|=1** [4]  
**Explanation:** 45-60° typical for good damping. [4]

**4. Gain margin?**  
a) Phase when gain=1  
b) dB from 0dB when phase=-180°  
c) Opposite phase margin  
d) No relation  
**Answer: b) dB from 0dB when phase=-180°** [4]
**Explanation:** >20dB safe, 40dB conservative. [4]

**5. Compensation improves stability by?**  
a) Reducing phase lag  
b) Adding dominant pole, reducing gain early  
c) Increasing gain  
d) No phase change  
**Answer: b) Adding dominant pole, reducing gain early** [5]
**Explanation:** Ensures |Aβ|<1 before 180° phase shift. [5]

**6. Negative feedback stable if?**  
a) Aβ >1 at 180°  
b) |Aβ| <1 when ∠Aβ=-180°  
c) Positive loop  
d) Zero phase  
**Answer: b) |Aβ| <1 when ∠Aβ=-180°** [4]  
**Explanation:** Prevents growing oscillations. [4]

**7. Lead compensation?**  
a) Reduces BW  
b) Adds phase lead, increases phase margin  
c) Lag only  
d) Gain reduction  
**Answer: b) Adds phase lead, increases phase margin** [5]
**Explanation:** RC network boosts high frequency phase. [5]

**8. Unconditional stability means?**  
a) Oscillates some loads  
b) Stable all gains ≤1  
c) Only unity gain  
d) Unstable  
**Answer: b) Stable all gains ≤1** [4]
**Explanation:** No right-half plane poles. [4]

**9. Bode plot used for?**  
a) Time response  
b) Gain/phase vs log f stability analysis  
c) DC only  
d) Nonlinear  
**Answer: b) Gain/phase vs log f stability analysis** [1]
**Explanation:** Predicts margins from asymptotic approximations. [1]

**10. Ringing indicates?**  
a) Perfect stability  
b) Low phase margin, underdamped  
c) Overdamped  
d) No feedback  
**Answer: b) Low phase margin, underdamped** [4]
**Explanation:** Step response overshoot/oscillation from poor margins. [4]
Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.