Loading...

cpy pst prnt kybrd kys rght clk dslb

ad banner

Direction Ratios and Direction Cosines | MCQs

Vector Algebra: Direction ratios, Direction cosines, 20 mcqs on it with explained answers

Here are 20 multiple-choice questions (MCQs) on Direction Ratios and Direction Cosines in Vector Algebra, with explained answers:

1. What are Direction Ratios of a line?
   - a) Cosines of the angles a line makes with coordinate axes
   - b) Any three numbers proportional to the direction cosines
   - c) Lengths of a vector
   - d) Coordinates of a point
   - Answer: b). Direction ratios (DRs) are any set of three numbers proportional to the direction cosines of a line [1].

2. If $$a, b, c$$ are direction ratios of a line, what are the direction cosines?
   - a) $$\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}$$
   - b) $$a, b, c$$
   - c) $$a^2, b^2, c^2$$
   - d) $$a+b+c$$
   - Answer: a). Direction cosines are normalized direction ratios [2][3].

3. The sum of squares of direction cosines is:
   - a) 0
   - b) 1
   - c) depends on vector magnitude
   - d) infinity
   - Answer: b). By definition, $$l^2 + m^2 + n^2 = 1$$ where $$l,m,n$$ are direction cosines [1].

4. Direction cosines represent:
   - a) Lengths of vector
   - b) Angles between line and coordinate axes
   - c) Cosines of angles of the line with coordinate axes
   - d) Angles between vectors
   - Answer: c). Direction cosines are cosines of angles the line makes with axes [1].

5. If the direction ratios of a line are (3, 4, 5), what is the magnitude used to find direction cosines?
   - a) 12
   - b) 60
   - c) $$\sqrt{50}$$
   - d) $$\sqrt{3^2 + 4^2 + 5^2} = \sqrt{50}$$
   - Answer: d). The magnitude is $$\sqrt{3^2 + 4^2 + 5^2} = \sqrt{50}$$ [2].

6. Given points $$P(1,2,3)$$ and $$Q(4,6,8)$$, what are the direction ratios of line $$PQ$$?
   - a) (3, 4, 5)
   - b) (1, 2, 3)
   - c) (4, 6, 8)
   - d) (3, 4, 5)
   - Answer: a). Direction ratios = $$Q - P = (4-1, 6-2, 8-3) = (3,4,5)$$ [2][4].

7. Direction cosines of a vector with direction ratios (2, -3, 6) are:
   - a) $$\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$$
   - b) $$\frac{2}{\sqrt{49}}, \frac{-3}{\sqrt{49}}, \frac{6}{\sqrt{49}}$$
   - c) $$\frac{2}{\sqrt{49}}, \frac{3}{\sqrt{49}}, \frac{6}{\sqrt{49}}$$
   - d) $$\frac{2}{\sqrt{29}}, \frac{-3}{\sqrt{29}}, \frac{6}{\sqrt{29}}$$
   - Answer: d). Magnitude = $$\sqrt{2^2 + (-3)^2 + 6^2} = \sqrt{49} = 7$$, so cosines are (2/7, -3/7, 6/7) [5].

8. The direction cosines of a vector are (1/3, 2/3, 2/3). Which of the following is true?
   - a) $$l^2 + m^2 + n^2 = 1$$
   - b) $$l + m + n = 1$$
   - c) $$l^2 + m^2 + n^2 < 1$$
   - d) $$l^2 + m^2 + n^2 > 1$$
   - Answer: a). By definition, sum of squares is 1 [1].

9. Which of the following is NOT a direction cosine?
   - a) 0.5
   - b) 1
   - c) 1.5
   - d) $$-1/\sqrt{3}$$
   - Answer: c). Direction cosines are cosines of angles, so must lie between -1 and 1 [1].

10. If direction cosines of a line are $$l, m, n$$, what is the angle made by the line with the x-axis?
    - a) $$\cos^{-1}(l)$$
    - b) $$l$$
    - c) $$\sin^{-1}(l)$$
    - d) $$90^\circ - l$$
    - Answer: a). Angle with x-axis = $$\cos^{-1}(l)$$ [1].

11. Direction ratios of the line joining $$A(2,3,-1)$$ and $$B(5,7,2)$$ are:
    - a) (3,4,-3)
    - b) (2,3,-1)
    - c) (5,7,2)
    - d) (3,4,3)
    - Answer: a). $$B - A = (5-2, 7-3, 2 - (-1)) = (3,4,3)$$ (note +3) [2][4].

12. If the direction ratios of a line are $$a, b, c$$, the direction cosines are given by:
    - a) $$(a,b,c)$$
    - b) $$\left(\frac{a}{\sqrt{a^2 + b^2 + c^2}}, \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \frac{c}{\sqrt{a^2 + b^2 + c^2}}\right)$$
    - c) $$a^2, b^2, c^2$$
    - d) $$\frac{a+b+c}{3}$$
    - Answer: b) [2][5].

13. Can direction ratios be zero?
    - a) Yes, one or two can be zero
    - b) No, they cannot be zero
    - c) Only one can be zero
    - d) None
    - Answer: a). Direction ratios can have zero components if the line is parallel to one or two axes [1].

14. If the direction cosines of a line are (0, 1, 0), what is the direction ratio?
    - a) (0, 1, 0)
    - b) (0, k, 0) where $$k$$ is any non-zero constant
    - c) (1, 0, 0)
    - d) Infinite
    - Answer: b). Direction ratios can be any proportional values, so any multiple of (0,1,0) [1][2].

15. The equation $$6x - 12 = 3y + 9 = 2z - 2$$ represents a line. What are the direction ratios of this line?
    - a) (6, 3, 2)
    - b) (-6, -3, -2)
    - c) (1/6, 1/3, 1/2)
    - d) (6, -3, 2)
    - Answer: a). Coefficients from symmetric form represent the direction ratios [6].

16. If a line in 3D space has direction cosines $$l, m, n$$, which condition must hold?
    - a) $$l + m + n = 1$$
    - b) $$l^2 + m^2 + n^2 = 1$$
    - c) $$l^2 + m^2 + n^2 > 1$$
    - d) None
    - Answer: b). Sum of squares of direction cosines is unity [1][2].

17. If $$a = 2, b = 3, c = 6$$ are direction ratios, what is the vector in direction of the line?
    - a) $$2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$$
    - b) $$\frac{2}{7}\mathbf{i} + \frac{3}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}$$
    - c) $$\mathbf{i} + \mathbf{j} + \mathbf{k}$$
    - d) None
    - Answer: a). Direction ratios form the components of the vector along the line [2][3].

18. The direction cosines of the vector $$\overrightarrow{PQ}$$ are $$\left\langle -\frac{2}{7}, \frac{3}{7}, -\frac{6}{7} \right\rangle$$. What are the direction ratios?
    - a) (-2, 3, -6)
    - b) $$\left\langle -\frac{2}{7}, \frac{3}{7}, -\frac{6}{7} \right\rangle$$
    - c) (2, -3, 6)
    - d) None
    - Answer: a). Direction ratios are proportional to direction cosines without normalization [7].

19. If the magnitude of a vector is $$r$$, then its unit vector is:
    - a) vector / $$r$$
    - b) vector * $$r$$
    - c) vector squared / $$r$$
    - d) None
    - Answer: a). Unit vector = vector divided by its magnitude [5].

20. Direction ratios and direction cosines differ because:
    - a) Ratios are normalized cosines
    - b) Cosines have unity sum of squares constraint
    - c) Ratios can be any proportional values
    - d) All of the above
    - Answer: d). Direction cosines are normalized direction ratios with sum squares = 1; ratios can be any proportional numbers [1][2].


20 more

Here are 20 more multiple-choice questions (MCQs) on Direction Ratios and Direction Cosines in Vector Algebra, with explained answers:

1. If the direction cosines of a line are $$l, m, n$$, and the angle between the line and the x-axis is $$60^\circ$$, what is $$l$$?
   - a) $$0$$
   - b) $$\frac{1}{2}$$
   - c) $$\frac{\sqrt{3}}{2}$$
   - d) $$1$$
   - Answer: b). $$l = \cos 60^\circ = \frac{1}{2}$$.

2. The direction ratios of a line are proportional to:
   - a) The components of a vector parallel to the line
   - b) The perpendicular distances from coordinate axes
   - c) The midpoints of the line segment
   - d) The angles made by the line with the axes
   - Answer: a). Direction ratios correspond to components of a vector along the line.

3. For direction cosines $$l, m, n$$, which relation is true?
   - a) $$l + m + n = 1$$
   - b) $$l^2 + m^2 + n^2 = 1$$
   - c) $$l^2 + m^2 + n^2 < 1$$
   - d) $$l^3 + m^3 + n^3 = 1$$
   - Answer: b). Sum of squares of direction cosines is 1.

4. The direction cosine $$m$$ is $$0$$, meaning the line is:
   - a) Parallel to y-axis
   - b) Perpendicular to y-axis
   - c) At 45° to y-axis
   - d) None of these
   - Answer: b). $$m = \cos \theta_y = 0$$ means line is perpendicular to y-axis.

5. Find the direction cosines of a vector with direction ratios (0, 3, 4).
   - a) $$\left(0, \frac{3}{5}, \frac{4}{5}\right)$$
   - b) $$\left(0, 3, 4\right)$$
   - c) $$\left(0, \frac{4}{5}, \frac{3}{5}\right)$$
   - d) None
   - Answer: a). Magnitude = 5, so cosines are direction ratios divided by 5.

6. True or False: Direction ratios can be negative.
   - a) True
   - b) False
   - Answer: a). Direction ratios can be negative depending on vector direction.

7. Find direction ratios of a line making equal angles with coordinate axes.
   - a) (1, 1, 1)
   - b) (0, 0, 0)
   - c) (1, 0, 0)
   - d) None
   - Answer: a). Equal angles mean direction ratios equal in magnitude.

8. If direction cosines of a line are $$l = \frac{1}{\sqrt{2}}, m = \frac{1}{\sqrt{2}}, n = 0$$, then the angle between the line and z-axis is:
   - a) 0°
   - b) 45°
   - c) 90°
   - d) 180°
   - Answer: c). $$n=0$$, so $$\theta_z = \cos^{-1}(0) = 90^\circ$$.

9. The direction ratios of a line joining points A(2,3,1) and B(5,7,4) are:
   - a) (3,4,3)
   - b) (7,10,5)
   - c) (2,3,1)
   - d) (5,7,4)
   - Answer: a).

10. The unit vector along a vector with direction ratios (6, 2, 3) is:
    - a) $$\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$$
    - b) $$\left(\frac{6}{\sqrt{49}}, \frac{2}{\sqrt{49}}, \frac{3}{\sqrt{49}}\right)$$
    - c) $$\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right)$$
    - d) None
    - Answer: a). Magnitude is 7, components divided by 7.

11. The direction cosines of a line are proportional to (2, -3, 6). What is the sum of their squares?
    - a) 1
    - b) 14
    - c) 49
    - d) Cannot be determined
    - Answer: a).

12. What is the significance of direction cosines in vector algebra?
    - a) They show the vector's magnitude
    - b) They represent the vector's orientation in space
    - c) They define lengths of projections on axes
    - d) All of these
    - Answer: b).

13. Which condition must hold for direction cosines $$l, m, n$$ of a line?
    - a) $$l^2 + m^2 + n^2 > 1$$
    - b) $$l^2 + m^2 + n^2 = 1$$
    - c) $$l^2 + m^2 + n^2 < 1$$
    - d) $$l + m + n = 1$$
    - Answer: b).

14. The angle between direction ratios (2, 2, 1) and (1, 0, 1) is:
    - a) $$90^\circ$$
    - b) $$45^\circ$$
    - c) $$60^\circ$$
    - d) $$30^\circ$$
    - Answer: c). Calculate dot product and magnitudes to find cosine.

15. Direction cosines of a vector are (0.6, 0.8, 0). Then the vector lies in:
    - a) XY-plane
    - b) XZ-plane
    - c) YZ-plane
    - d) None
    - Answer: a).

16. Two lines with direction cosines $$(l_1, m_1, n_1)$$ and $$(l_2, m_2, n_2)$$ are perpendicular if:
    - a) $$l_1l_2 + m_1m_2 + n_1n_2 = 1$$
    - b) $$l_1l_2 + m_1m_2 + n_1n_2 = 0$$
    - c) $$l_1 + l_2 = 0$$
    - d) None
    - Answer: b).

17. If a vector has direction ratios (5, 0, 0), then what plane is it parallel to?
    - a) XY-plane
    - b) YZ-plane
    - c) XZ-plane
    - d) None
    - Answer: b). Zero component in y and z means along x-axis, parallel to YZ-plane.

18. The relation between direction cosines and direction ratios is:
    - a) Cosines are normalized ratios
    - b) Ratios are reciprocals of cosines
    - c) Ratios are squares of cosines
    - d) None
    - Answer: a).

19. Direction cosines of a vector are $$\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$. What are its direction ratios?
    - a) (1, 1, 1)
    - b) (1, 2, 2)
    - c) $$\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$
    - d) (3, 2, 2)
    - Answer: b).

20. The scalar product of two vectors with direction cosines $$(l_1, m_1, n_1)$$ and $$(l_2, m_2, n_2)$$ equals:
    - a) $$l_1 l_2 + m_1 m_2 + n_1 n_2$$
    - b) $$l_1 m_2 + m_1 n_2 + n_1 l_2$$
    - c) 0
    - d) None
    - Answer: a).

Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.