Loading...

cpy pst prnt kybrd kys rght clk dslb

ad banner

Vector Algebra | MCQs

vector Algebra,  20 mcqs on it with explained answers

Here are 20 multiple-choice questions (MCQs) on Vector Algebra with explained answers for each:

1. What is the dot product of vectors $$\mathbf{A} = 3\mathbf{i} + 2\mathbf{j}$$ and $$\mathbf{B} = \mathbf{i} - \mathbf{j}$$?
   - a) 1
   - b) 5
   - c) 3
   - d) -1
   - Answer: a) 1. Explanation: Dot product = $$3 \times 1 + 2 \times (-1) = 3 - 2 = 1$$.

2. The cross product $$\mathbf{A} \times \mathbf{B}$$ results in a vector...
   - a) parallel to $$\mathbf{A}$$
   - b) parallel to $$\mathbf{B}$$
   - c) perpendicular to both $$\mathbf{A}$$ and $$\mathbf{B}$$
   - d) zero vector always
   - Answer: c) perpendicular to both. Explanation: Cross product is perpendicular to the plane containing $$\mathbf{A}$$ and $$\mathbf{B}$$.

3. Magnitude of vector $$\mathbf{A} = 4\mathbf{i} - 3\mathbf{j}$$ is...
   - a) 1
   - b) 5
   - c) 7
   - d) 12
   - Answer: b) 5. Explanation: $$\sqrt{4^2 + (-3)^2} = \sqrt{16+9} = \sqrt{25} = 5$$.

4. Two vectors are said to be orthogonal if their dot product is...
   - a) zero
   - b) one
   - c) negative
   - d) positive
   - Answer: a) zero. Explanation: Orthogonal vectors have zero dot product.

5. If $$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}||\mathbf{B}|\cos\theta$$, then $$\theta$$ is the...
   - a) angle between $$\mathbf{A}$$ and $$\mathbf{B}$$
   - b) sum of angles of $$\mathbf{A}$$ and $$\mathbf{B}$$
   - c) product of magnitudes
   - d) difference of vectors
   - Answer: a) angle between $$\mathbf{A}$$ and $$\mathbf{B}$$.

6. The vector triple product $$\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$$ equals...
   - a) $$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}$$
   - b) $$\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$
   - c) zero vector
   - d) $$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$$
   - Answer: b) $$\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$. Explanation: This is the vector triple product identity.

7. The projection of vector $$\mathbf{A}$$ on vector $$\mathbf{B}$$ is given by...
   - a) $$\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|} \hat{\mathbf{B}}$$
   - b) $$\mathbf{A} \times \mathbf{B}$$
   - c) $$|\mathbf{A}| |\mathbf{B}|$$
   - d) $$\mathbf{B} \times \mathbf{A}$$
   - Answer: a) $$\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|} \hat{\mathbf{B}}$$.

8. If two vectors are parallel, their cross product is...
   - a) zero vector
   - b) non-zero vector
   - c) depends on angle
   - d) undefined
   - Answer: a) zero vector. Explanation: Cross product zero means vectors are parallel or one is zero.

9. Unit vector in the direction of $$\mathbf{A} = 6\mathbf{i} + 8\mathbf{j}$$ is...
   - a) $$\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}$$
   - b) $$6\mathbf{i} + 8\mathbf{j}$$
   - c) $$\mathbf{i} + \mathbf{j}$$
   - d) $$\frac{6}{8}\mathbf{i} + \frac{8}{6}\mathbf{j}$$
   - Answer: a) $$\frac{3}{5}\mathbf{i} + \frac{4}{5}\mathbf{j}$$. Explanation: Magnitude = 10, unit vector divides components by 10.

10. Scalar triple product $$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$$ gives...
    - a) area of parallelogram
    - b) volume of parallelepiped
    - c) angle between vectors
    - d) zero always
    - Answer: b) volume of parallelepiped.

11. Vector $$\mathbf{A} = 2\mathbf{i} + 3\mathbf{j}$$ and $$\mathbf{B} = -4\mathbf{i} + \mathbf{j}$$, $$\mathbf{A} + \mathbf{B}$$ is...
    - a) $$-2\mathbf{i} + 4\mathbf{j}$$
    - b) $$-6\mathbf{i} + 2\mathbf{j}$$
    - c) $$2\mathbf{i} + 4\mathbf{j}$$
    - d) $$-6\mathbf{i} + 4\mathbf{j}$$
    - Answer: a) $$-2\mathbf{i} + 4\mathbf{j}$$.

12. The position vector of the midpoint between points $$\mathbf{P}$$ and $$\mathbf{Q}$$ is...
    - a) $$\mathbf{P} - \mathbf{Q}$$
    - b) $$\frac{\mathbf{P} + \mathbf{Q}}{2}$$
    - c) $$\mathbf{P} \times \mathbf{Q}$$
    - d) $$\mathbf{P} + \mathbf{Q}$$
    - Answer: b) $$\frac{\mathbf{P} + \mathbf{Q}}{2}$$.

13. Which of the following is a vector quantity?
    - a) speed
    - b) distance
    - c) displacement
    - d) time
    - Answer: c) displacement.

14. The angle between two vectors $$\mathbf{A}$$ and $$\mathbf{B}$$ with $$\mathbf{A} \cdot \mathbf{B} = 0$$ is...
    - a) 0°
    - b) 45°
    - c) 90°
    - d) 180°
    - Answer: c) 90°.

15. If $$\mathbf{A} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$, the magnitude is...
    - a) $$a + b + c$$
    - b) $$a^2 + b^2 + c^2$$
    - c) $$\sqrt{a^2 + b^2 + c^2}$$
    - d) $$\sqrt{a + b + c}$$
    - Answer: c) $$\sqrt{a^2 + b^2 + c^2}$$.

16. Which of these is true for any vectors $$\mathbf{A}$$, $$\mathbf{B}$$?
    - a) $$\mathbf{A} \times \mathbf{B} = \mathbf{B} \times \mathbf{A}$$
    - b) $$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$
    - c) $$|\mathbf{A} + \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}|$$
    - d) $$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$ false
    - Answer: b) $$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$.

17. The vector sum $$\mathbf{A} + \mathbf{B}$$ is commutative. It means...
    - a) $$\mathbf{A} + \mathbf{B} = -(\mathbf{B} + \mathbf{A})$$
    - b) $$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$
    - c) $$\mathbf{A} + \mathbf{B} = 0$$
    - d) None
    - Answer: b) $$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$.

18. The vector $$\mathbf{A} - \mathbf{B}$$ is...
    - a) vector from $$\mathbf{B}$$ to $$\mathbf{A}$$
    - b) vector from $$\mathbf{A}$$ to $$\mathbf{B}$$
    - c) scalar quantity
    - d) zero vector
    - Answer: a) vector from $$\mathbf{B}$$ to $$\mathbf{A}$$.

19. The angle between $$\mathbf{A}$$ and $$-\mathbf{A}$$ is...
    - a) 0°
    - b) 90°
    - c) 180°
    - d) depends on vectors
    - Answer: c) 180°.

20. Vector addition follows which law?
    - a) Associative law only
    - b) Commutative law only
    - c) Both associative and commutative laws
    - d) Neither
    - Answer: c) Both associative and commutative laws.

20 more

Here are 20 more multiple-choice questions on Vector Algebra with explained answers:

1. If $$\mathbf{A} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$, then the unit vector along $$\mathbf{A}$$ is:
   - a) $$\frac{1}{\sqrt{14}}(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$
   - b) $$\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
   - c) $$\mathbf{i} + \mathbf{j} + \mathbf{k}$$
   - d) $$\frac{1}{14}(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$$
   - Answer: a) Unit vector is vector divided by its magnitude. Magnitude = $$\sqrt{1^2+2^2+3^2}=\sqrt{14}$$.

2. The scalar projection of $$\mathbf{A}$$ on $$\mathbf{B}$$ is given by:
   - a) $$\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|}$$
   - b) $$\mathbf{A} \times \mathbf{B}$$
   - c) $$|\mathbf{A}||\mathbf{B}|\sin\theta$$
   - d) $$|\mathbf{A}||\mathbf{B}|\cos\theta$$
   - Answer: a) Scalar projection is the magnitude of the projection vector.

3. If $$\mathbf{A} \times \mathbf{B} = \mathbf{0}$$, then:
   - a) $$\mathbf{A}$$ and $$\mathbf{B}$$ are perpendicular
   - b) $$\mathbf{A}$$ and $$\mathbf{B}$$ are parallel
   - c) $$\mathbf{A} = \mathbf{0}$$
   - d) $$\mathbf{B} = \mathbf{0}$$
   - Answer: b) Cross product zero means vectors are parallel or one is zero.

4. The vector $$\mathbf{A} \cdot \mathbf{B}$$ represents:
   - a) vector product
   - b) scalar product
   - c) both
   - d) neither
   - Answer: b) Scalar product (dot product).

5. Volume of parallelepiped formed by $$\mathbf{A}, \mathbf{B}, \mathbf{C}$$ is:
   - a) $$|\mathbf{A} \times \mathbf{B}|$$
   - b) $$|\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})|$$
   - c) $$|\mathbf{A} + \mathbf{B} + \mathbf{C}|$$
   - d) $$|\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}|$$
   - Answer: b) Scalar triple product absolute value.

6. If $$\mathbf{A} = 3\mathbf{i} - \mathbf{j}$$ and $$\mathbf{B} = \mathbf{i} + 4\mathbf{j}$$, then $$\mathbf{A} \cdot \mathbf{B}$$ is:
   - a) -1
   - b) 7
   - c) 3
   - d) 0
   - Answer: b) $$3 \times 1 + (-1) \times 4 = 3 -4 = -1$$, so answer corrected: a) -1.

7. The vector product $$\mathbf{A} \times \mathbf{B}$$ is anti-commutative. It means:
   - a) $$\mathbf{A} \times \mathbf{B} = \mathbf{B} \times \mathbf{A}$$
   - b) $$\mathbf{A} \times \mathbf{B} = -(\mathbf{B} \times \mathbf{A})$$
   - c) $$\mathbf{A} \times \mathbf{B} = \mathbf{0}$$
   - d) None
   - Answer: b) Anti-commutative property.

8. The dot product of two perpendicular vectors is:
   - a) 1
   - b) 0
   - c) -1
   - d) depends on magnitude
   - Answer: b) Zero.

9. The angle between vectors $$\mathbf{A}$$ and $$-\mathbf{A}$$ is:
   - a) 0°
   - b) 90°
   - c) 180°
   - d) none
   - Answer: c) 180°.

10. The vector sum of $$\mathbf{A} = 3\mathbf{i} + 4\mathbf{j}$$ and $$\mathbf{B} = -3\mathbf{i} + \mathbf{j}$$ is:
    - a) $$6\mathbf{i} + 5\mathbf{j}$$
    - b) $$0\mathbf{i} + 5\mathbf{j}$$
    - c) $$0\mathbf{i} + 3\mathbf{j}$$
    - d) $$6\mathbf{i} + 3\mathbf{j}$$
    - Answer: b) Components add: $$3 - 3 = 0$$, $$4 + 1 = 5$$.

11. The magnitude of $$\mathbf{A} \times \mathbf{B}$$ equals:
    - a) $$|\mathbf{A}||\mathbf{B}|\sin\theta$$
    - b) $$|\mathbf{A}||\mathbf{B}|\cos\theta$$
    - c) $$\mathbf{A} \cdot \mathbf{B}$$
    - d) $$|\mathbf{A}| + |\mathbf{B}|$$
    - Answer: a).

12. The direction of $$\mathbf{A} \times \mathbf{B}$$ is given by:
    - a) right-hand rule
    - b) left-hand rule
    - c) parallel to $$\mathbf{A}$$
    - d) parallel to $$\mathbf{B}$$
    - Answer: a).

13. A vector with zero magnitude is called:
    - a) zero vector
    - b) unit vector
    - c) null vector
    - d) both a and c
    - Answer: d).

14. If $$\mathbf{A} = 4\mathbf{i} - 4\mathbf{j}$$, then a vector perpendicular to $$\mathbf{A}$$ is:
    - a) $$4\mathbf{j} + 4\mathbf{i}$$
    - b) $$4\mathbf{j} + 4\mathbf{i}$$
    - c) $$4\mathbf{j} + 4\mathbf{i}$$
    - d) any vector satisfying $$\mathbf{A} \cdot \mathbf{X} = 0$$
    - Answer: d).

15. Which vector has magnitude 1?
    - a) $$\mathbf{A} = \mathbf{i} + \mathbf{j} + \mathbf{k}$$
    - b) $$\mathbf{B} = \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$$
    - c) $$\mathbf{C} = 2\mathbf{i}$$
    - d) $$\mathbf{D} = 0$$
    - Answer: b).

16. The sum of two vectors is zero if:
    - a) they are equal
    - b) they are opposite and equal in magnitude
    - c) one is zero vector
    - d) magnitude sum is zero
    - Answer: b).

17. The dot product of $$\mathbf{A} = 2\mathbf{i} + 3\mathbf{j}$$ and $$\mathbf{B} = -3\mathbf{i} + 4\mathbf{j}$$ is:
    - a) 0
    - b) 6
    - c) 8
    - d) -6
    - Answer: d). Explanation: $$2 \times -3 + 3 \times 4 = -6 + 12 = 6$$, corrected to b) 6.

18. Which statement is true:
    - a) $$\mathbf{A} \cdot \mathbf{B} = 0$$ implies $$\mathbf{A} \times \mathbf{B} = 0$$
    - b) $$\mathbf{A} \times \mathbf{B} = 0$$ implies $$\mathbf{A} \cdot \mathbf{B} = 0$$
    - c) $$\mathbf{A} \cdot \mathbf{B} = 0$$ implies $$\mathbf{A}$$ and $$\mathbf{B}$$ are perpendicular
    - d) None
    - Answer: c).

19. If $$\mathbf{A} = \mathbf{i} + \mathbf{j}$$, $$\mathbf{B} = \mathbf{j} + \mathbf{k}$$, then $$\mathbf{A} \times \mathbf{B}$$ is:
    - a) $$\mathbf{i} + \mathbf{k}$$
    - b) $$\mathbf{i} - \mathbf{k}$$
    - c) $$\mathbf{i} \times \mathbf{k}$$
    - d) $$\mathbf{0}$$
    - Answer: b). Calculation: $$\mathbf{i}\times \mathbf{j} = \mathbf{k}$$, $$\mathbf{i}\times \mathbf{k} = -\mathbf{j}$$, etc.

20. The resultant of two vectors acting at a point is maximum when the angle between them is:
    - a) 0°
    - b) 90°
    - c) 180°
    - d) 45°
    - Answer: a) 0°. Explained by vector addition magnitude maximization.



Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.