Loading...

cpy pst prnt kybrd kys rght clk dslb

ad banner

Gradient, Divergence, Curl (Vector) | MCQs

Gradient, Divergence, Curl.  20 mcqs on these vector with explained answers

Here are 20 MCQs on Gradient, Divergence, and Curl with explained answers based on commonly tested concepts:

1. **What is the gradient of a scalar function $$f(x, y, z)$$?**  
A) Scalar  
B) Vector  
C) Matrix  
D) Zero  
**Answer:** B) Vector  
**Explanation:** Gradient is a vector of partial derivatives showing direction and rate of max increase of $$f$$.

2. **The divergence of a vector field $$\vec{F}$$ is:**  
A) A scalar  
B) A vector  
C) Zero always  
D) Undefined  
**Answer:** A) A scalar  
**Explanation:** Divergence measures the net "outflow" at a point, producing a scalar.

3. **The curl of a vector field $$\vec{F}$$ results in:**  
A) Scalar  
B) Vector  
C) Zero always  
D) Matrix  
**Answer:** B) Vector  
**Explanation:** Curl measures rotational tendency, a vector orthogonal to rotation plane.

4. **The divergence of the curl of any vector field is:**  
A) Always zero  
B) Always one  
C) Depends on the field  
D) Undefined  
**Answer:** A) Always zero  
**Explanation:** Mathematical identity $$\nabla \cdot (\nabla \times \vec{F}) = 0$$.

5. **Curl of gradient of any scalar field is:**  
A) Zero vector  
B) Non-zero vector  
C) Scalar  
D) Undefined  
**Answer:** A) Zero vector  
**Explanation:** Curl of gradient is always zero: $$\nabla \times (\nabla f) = 0$$.

6. **Gradient of a function $$f(x,y,z) = x^2 + y^2 + z^2$$ at point $$(1, -1, 2)$$ is:**  
A) $$(2, -2, 4)$$  
B) $$(1, -1, 2)$$  
C) $$(3, -3, 6)$$  
D) $$(0, 0, 0)$$  
**Answer:** A) $$(2, -2, 4)$$  
**Explanation:** Gradient is $$\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = (2x, 2y, 2z)$$.

7. **Divergence of $$\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$$ is:**  
A) 1  
B) 0  
C) 3  
D) $$x + y + z$$  
**Answer:** C) 3  
**Explanation:** $$\nabla \cdot \vec{F} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 1 + 1 + 1 = 3$$.

8. **Curl of $$\vec{F} = y\hat{i} - x\hat{j} + 0\hat{k}$$ at $$(1, 1, 0)$$ is:**  
A) $$0\hat{i} + 0\hat{j} + (-2)\hat{k}$$  
B) $$0\hat{i} + 0\hat{j} + 2\hat{k}$$  
C) $$2\hat{i} + 0\hat{j} + 0\hat{k}$$  
D) Zero vector  
**Answer:** B) $$0\hat{i} + 0\hat{j} + 2\hat{k}$$  
**Explanation:** Curl components: $$\nabla \times \vec{F} = (0,0,\frac{\partial (-x)}{\partial x} - \frac{\partial y}{\partial y}) = (0,0,-1-(-1))=(0,0,2)$$.

9. **If $$f(x,y,z) = xy + yz + zx$$, $$\nabla f$$ is:**  
A) $$(y+z, x+z, x+y)$$  
B) $$(x+y, y+z, z+x)$$  
C) $$(yz, xz, xy)$$  
D) Zero vector  
**Answer:** A) $$(y+z, x+z, x+y)$$  
**Explanation:** Partial derivatives computed accordingly.

10. **The formula for divergence of $$\vec{F} = P\hat{i} + Q\hat{j} + R\hat{k}$$ is:**  
A) $$\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$  
B) $$\nabla \times \vec{F}$$  
C) $$\nabla \cdot \vec{F}$$  
D) Both A and C  
**Answer:** D) Both A and C  
**Explanation:** Divergence is sum of partial derivatives of vector components.

11. **For $$\vec{F} = (z, x, y)$$, divergence $$\nabla \cdot \vec{F}$$ is:**  
A) 3  
B) 0  
C) 1  
D) $$x + y + z$$  
**Answer:** B) 0  
**Explanation:** $$\frac{\partial z}{\partial x}=0$$, $$\frac{\partial x}{\partial y}=0$$, $$\frac{\partial y}{\partial z}=0$$.

12. **Gradient of $$f = e^{2x} \cos y$$ is:**  
A) $$(2e^{2x} \cos y, -e^{2x} \sin y)$$  
B) $$(e^{2x} \cos y, e^{2x} \sin y)$$  
C) $$(e^{x} \cos y, -e^{2x} \sin y)$$  
D) Zero vector  
**Answer:** A) $$(2e^{2x} \cos y, -e^{2x} \sin y)$$  
**Explanation:** Partial derivative wrt $$x$$ and $$y$$.

13. **Curl of gradient of any scalar function is always:**  
A) 1  
B) -1  
C) Zero vector  
D) A non-zero vector  
**Answer:** C) Zero vector

14. **Divergence can be interpreted as:**  
A) Rate of flux expansion at a point  
B) Rate of rotation at a point  
C) Velocity vector  
D) Gradient magnitude  
**Answer:** A) Rate of flux expansion at a point

15. **Curl measures:**  
A) Rotational tendency of a vector field  
B) Rate of scalar function max increase  
C) Divergence at a point  
D) Total flux  
**Answer:** A) Rotational tendency of a vector field

16. **If $$\vec{F} = \nabla \times \vec{A}$$, then $$\nabla \cdot \vec{F} =$$:**  
A) 0  
B) 1  
C) $$\vec{A}$$  
D) Undefined  
**Answer:** A) 0  
**Explanation:** Divergence of a curl is zero.

17. **For $$f(x,y,z)=3x^2 y + z^2$$, the gradient $$\nabla f$$ at $$(1,2,0)$$ is:**  
A) $$(12,3,0)$$  
B) $$(12,1,0)$$  
C) $$(6,3,0)$$  
D) $$(6,1,0)$$  
**Answer:** A) $$(12,3,0)$$  
**Explanation:** $$\partial f/\partial x=6xy$$, at (1,2,0) is 12, $$\partial f/\partial y=3x^2=3$$, $$\partial f/\partial z=2z=0$$.

18. **Which identity is TRUE?**  
A) $$\nabla \times (\nabla f) = 0$$  
B) $$\nabla \cdot (\nabla \times \vec{F}) = 0$$  
C) $$\nabla \cdot (\nabla f) = \nabla^2 f$$  
D) All above  
**Answer:** D) All above

19. **In vector calculus, $$\nabla^2$$ is called:**  
A) Gradient  
B) Curl  
C) Laplacian operator  
D) Divergence  
**Answer:** C) Laplacian operator

20. **If $$\vec{F} = (xy, yz, zx)$$, $$\nabla \cdot \vec{F}$$ is:**  
A) $$x + y + z$$  
B) $$y + z + x$$  
C) $$y + z + x$$ (same as A)  
D) $$yz + zx + xy$$  
**Answer:** A) $$x + y + z$$  
**Explanation:** $$\frac{\partial xy}{\partial x} = y$$, $$\frac{\partial yz}{\partial y} = z$$, $$\frac{\partial zx}{\partial z}=x$$, sum: $$x + y + z$$.

***

20 more

Here are 20 more multiple-choice questions (MCQs) on Gradient, Divergence, and Curl with explained answers, gathering key concepts from vector calculus:

1. The gradient of $$f(x,y) = x^2y + y^3$$ is:  
A) $$(2xy, x^2 + 3y^2)$$  
B) $$(x^2, 3y^2)$$  
C) $$(2x + y, 3y)$$  
D) Zero vector  
**Answer:** A) $$(2xy, x^2 + 3y^2)$$  
**Explanation:** Partial derivatives $$\frac{\partial f}{\partial x} = 2xy$$, $$\frac{\partial f}{\partial y} = x^2 + 3y^2$$.

2. Divergence of $$\vec{F} = (x^2, y^2, z^2)$$ is:  
A) $$x + y + z$$  
B) $$2x + 2y + 2z$$  
C) $$3$$  
D) 0  
**Answer:** B) $$2x + 2y + 2z$$

3. Curl of $$\vec{F} = (yz, zx, xy)$$ is:  
A) $$0$$  
B) $$(x-y, y-z, z-x)$$  
C) $$(y-z, z-x, x-y)$$  
D) $$(0,0,0)$$  
**Answer:** D) $$(0,0,0)$$  
**Explanation:** Curl evaluates to zero for this symmetric field.

4. The divergence of $$\nabla \times \vec{F}$$ is:  
A) 0  
B) 1  
C) $$\vec{F}$$  
D) Undefined  
**Answer:** A) 0

5. For scalar field $$f = e^{xy}$$, $$\nabla f$$ is:  
A) $$(ye^{xy}, xe^{xy})$$  
B) $$(xe^{xy}, ye^{xy})$$  
C) Zero vector  
D) $$(e^{xy}, e^{xy})$$  
**Answer:** A) $$(ye^{xy}, xe^{xy})$$

6. The curl of gradient of any scalar field is:  
A) Zero vector  
B) Identity matrix  
C) A vector equal to gradient  
D) None of these  
**Answer:** A) Zero vector

7. What is the Laplacian $$\nabla^2 f$$ of $$f = x^2 + y^2 + z^2$$?  
A) 2  
B) 3  
C) 6  
D) 0  
**Answer:** C) 6  
**Explanation:** Sum of second derivatives $$2+2+2=6$$.

8. If $$\vec{F} = (xy, yz, zx)$$, what is $$\nabla \cdot \vec{F}$$ at (1,1,1)?  
A) 0  
B) 3  
C) 2  
D) 6  
**Answer:** B) 3  
**Explanation:** $$ \frac{\partial xy}{\partial x}= y=1 $$, $$ \frac{\partial yz}{\partial y} = z =1 $$, $$ \frac{\partial zx}{\partial z}= x=1 $$.

9. Gradient points in the direction of:  
A) Maximum increase of scalar field  
B) Maximum decrease  
C) Minimum change  
D) Random direction  
**Answer:** A) Maximum increase

10. The divergence of a constant vector field is:  
A) Zero  
B) Constant  
C) Infinity  
D) Variable  
**Answer:** A) Zero

11. $$\nabla \cdot ( \nabla \times \vec{F} ) =$$  
A) 0  
B) 1  
C) $$\vec{F}$$  
D) Undefined  
**Answer:** A) 0

12. Curl measures the:  
A) Rotational property  
B) Rate of change  
C) Flux density  
D) Scalar field magnitude  
**Answer:** A) Rotational property

13. Divergence of $$\vec{F} = (x \sin y, y \cos z, z \sin x)$$ at origin (0,0,0) is:  
A) 0  
B) 1  
C) -1  
D) Undefined  
**Answer:** A) 0

14. The curl of $$\vec{F}=(z, 0, x)$$ is:  
A) $$(0, 1, -1)$$  
B) $$(1, -1, 0)$$  
C) $$(0, -1, 1)$$  
D) $$\vec{0}$$  
**Answer:** A) $$(0, 1, -1)$$

15. Gradient of the scalar $$f = \ln(x^2 + y^2)$$ at $$(1,0)$$ is:  
A) $$(2,0)$$  
B) $$(2,2)$$  
C) $$(1,1)$$  
D) $$(0,0)$$  
**Answer:** A) $$(2,0)$$

16. For $$f(x,y,z) = xyz$$, $$\nabla f$$ at (1,2,3) equals:  
A) $$(6,3,2)$$  
B) $$(2,3,1)$$  
C) $$(1,2,3)$$  
D) $$(3,6,2)$$  
**Answer:** A) $$(6,3,2)$$

17. The curl of $$ \vec{F} = (y, -x, 0) $$ is:  
A) $$ (0, 0, -2) $$  
B) $$ (0, 0, 2) $$  
C) $$ (0, 0, 0) $$  
D) $$ (2, 2, 0) $$  
**Answer:** B) $$ (0, 0, 2) $$

18. The Laplacian operator is the divergence of the:  
A) Gradient  
B) Curl  
C) Vector field itself  
D) Scalar field  
**Answer:** A) Gradient

19. The vector field $$\vec{F}$$ is irrotational if:  
A) $$\nabla \times \vec{F} = \vec{0}$$  
B) $$\nabla \cdot \vec{F} = 0$$  
C) $$\nabla f = \vec{0}$$  
D) $$\vec{F} = \vec{0}$$  
**Answer:** A) $$\nabla \times \vec{F} = \vec{0}$$

20. Apply divergence to $$\vec{F} = \nabla \phi$$ where $$\phi$$ is scalar. The result is:  
A) Laplacian of $$\phi$$  
B) Zero  
C) Gradient of $$\phi$$  
D) Curl of $$\phi$$  
**Answer:** A) Laplacian of $$\phi$$

***


20 more

Here are 20 more multiple-choice questions (MCQs) on Gradient, Divergence, and Curl with explained answers, gathering key concepts from vector calculus:

1. The gradient of $$f(x,y) = x^2y + y^3$$ is:  
A) $$(2xy, x^2 + 3y^2)$$  
B) $$(x^2, 3y^2)$$  
C) $$(2x + y, 3y)$$  
D) Zero vector  
**Answer:** A) $$(2xy, x^2 + 3y^2)$$  
**Explanation:** Partial derivatives $$\frac{\partial f}{\partial x} = 2xy$$, $$\frac{\partial f}{\partial y} = x^2 + 3y^2$$.

2. Divergence of $$\vec{F} = (x^2, y^2, z^2)$$ is:  
A) $$x + y + z$$  
B) $$2x + 2y + 2z$$  
C) $$3$$  
D) 0  
**Answer:** B) $$2x + 2y + 2z$$

3. Curl of $$\vec{F} = (yz, zx, xy)$$ is:  
A) $$0$$  
B) $$(x-y, y-z, z-x)$$  
C) $$(y-z, z-x, x-y)$$  
D) $$(0,0,0)$$  
**Answer:** D) $$(0,0,0)$$  
**Explanation:** Curl evaluates to zero for this symmetric field.

4. The divergence of $$\nabla \times \vec{F}$$ is:  
A) 0  
B) 1  
C) $$\vec{F}$$  
D) Undefined  
**Answer:** A) 0

5. For scalar field $$f = e^{xy}$$, $$\nabla f$$ is:  
A) $$(ye^{xy}, xe^{xy})$$  
B) $$(xe^{xy}, ye^{xy})$$  
C) Zero vector  
D) $$(e^{xy}, e^{xy})$$  
**Answer:** A) $$(ye^{xy}, xe^{xy})$$

6. The curl of gradient of any scalar field is:  
A) Zero vector  
B) Identity matrix  
C) A vector equal to gradient  
D) None of these  
**Answer:** A) Zero vector

7. What is the Laplacian $$\nabla^2 f$$ of $$f = x^2 + y^2 + z^2$$?  
A) 2  
B) 3  
C) 6  
D) 0  
**Answer:** C) 6  
**Explanation:** Sum of second derivatives $$2+2+2=6$$.

8. If $$\vec{F} = (xy, yz, zx)$$, what is $$\nabla \cdot \vec{F}$$ at (1,1,1)?  
A) 0  
B) 3  
C) 2  
D) 6  
**Answer:** B) 3  
**Explanation:** $$ \frac{\partial xy}{\partial x}= y=1 $$, $$ \frac{\partial yz}{\partial y} = z =1 $$, $$ \frac{\partial zx}{\partial z}= x=1 $$.

9. Gradient points in the direction of:  
A) Maximum increase of scalar field  
B) Maximum decrease  
C) Minimum change  
D) Random direction  
**Answer:** A) Maximum increase

10. The divergence of a constant vector field is:  
A) Zero  
B) Constant  
C) Infinity  
D) Variable  
**Answer:** A) Zero

11. $$\nabla \cdot ( \nabla \times \vec{F} ) =$$  
A) 0  
B) 1  
C) $$\vec{F}$$  
D) Undefined  
**Answer:** A) 0

12. Curl measures the:  
A) Rotational property  
B) Rate of change  
C) Flux density  
D) Scalar field magnitude  
**Answer:** A) Rotational property

13. Divergence of $$\vec{F} = (x \sin y, y \cos z, z \sin x)$$ at origin (0,0,0) is:  
A) 0  
B) 1  
C) -1  
D) Undefined  
**Answer:** A) 0

14. The curl of $$\vec{F}=(z, 0, x)$$ is:  
A) $$(0, 1, -1)$$  
B) $$(1, -1, 0)$$  
C) $$(0, -1, 1)$$  
D) $$\vec{0}$$  
**Answer:** A) $$(0, 1, -1)$$

15. Gradient of the scalar $$f = \ln(x^2 + y^2)$$ at $$(1,0)$$ is:  
A) $$(2,0)$$  
B) $$(2,2)$$  
C) $$(1,1)$$  
D) $$(0,0)$$  
**Answer:** A) $$(2,0)$$

16. For $$f(x,y,z) = xyz$$, $$\nabla f$$ at (1,2,3) equals:  
A) $$(6,3,2)$$  
B) $$(2,3,1)$$  
C) $$(1,2,3)$$  
D) $$(3,6,2)$$  
**Answer:** A) $$(6,3,2)$$

17. The curl of $$ \vec{F} = (y, -x, 0) $$ is:  
A) $$ (0, 0, -2) $$  
B) $$ (0, 0, 2) $$  
C) $$ (0, 0, 0) $$  
D) $$ (2, 2, 0) $$  
**Answer:** B) $$ (0, 0, 2) $$

18. The Laplacian operator is the divergence of the:  
A) Gradient  
B) Curl  
C) Vector field itself  
D) Scalar field  
**Answer:** A) Gradient

19. The vector field $$\vec{F}$$ is irrotational if:  
A) $$\nabla \times \vec{F} = \vec{0}$$  
B) $$\nabla \cdot \vec{F} = 0$$  
C) $$\nabla f = \vec{0}$$  
D) $$\vec{F} = \vec{0}$$  
**Answer:** A) $$\nabla \times \vec{F} = \vec{0}$$

20. Apply divergence to $$\vec{F} = \nabla \phi$$ where $$\phi$$ is scalar. The result is:  
A) Laplacian of $$\phi$$  
B) Zero  
C) Gradient of $$\phi$$  
D) Curl of $$\phi$$  
**Answer:** A) Laplacian of $$\phi$$

***
Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.