Loading...

cpy pst prnt kybrd kys rght clk dslb

ad banner

Probability | MCQs

20 mcqs numericals with 4 options on probability only with explained answers

Here is a set of 20 multiple-choice numerical questions on probability covering Multiplication Theorem, Conditional Probability, Independent Events, Total Probability, Baye’s Theorem, and Partition of a Sample Space, with explained answers:

1. Two dice are rolled. What is the probability that the sum is 8?
    a) 5/36
    b) 1/6
    c) 7/36
    d) 1/12

Explanation: Possible pairs are (2,6),(3,5),(4,4),(5,3),(6,2) → 5 ways; total=36.

2. If $$P(A) = \frac{1}{3}$$, $$P(B) = \frac{1}{4}$$ and $$A,B$$ independent, $$P(A \cap B)$$ = ?
    a) 1/12
    b) 1/7
    c) 1/6
    d) 1/9

Explanation: For independent events $$P(A \cap B) = P(A)P(B) = \frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$$.

3. A bag has 3 white and 2 black balls. Two balls drawn without replacement. Probability both are white?
    a) 3/10
    b) 1/2
    c) 3/5
    d) 1/5

Explanation: $$ \frac{3}{5} \times \frac{2}{4} = \frac{6}{20} = \frac{3}{10} $$.

4. If $$P(A|B) = \frac{1}{2}$$, $$P(B) = \frac{1}{3}$$. Find $$P(A \cap B)$$?
    a) 1/6
    b) 1/2
    c) 1/3
    d) 1/5

Explanation: $$P(A \cap B) = P(A|B)P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$.

5. Two cards drawn from a deck. Probability both are kings (without replacement)?
    a) 1/221
    b) 1/169
    c) 1/52
    d) 1/325

Explanation: $$ \frac{4}{52} \times \frac{3}{51} = \frac{12}{2652} = \frac{1}{221}$$.

6. Events $$A$$ and $$B$$ are such that $$P(A) = 0.4$$, $$P(B) = 0.5$$, $$P(A \cup B) = 0.7$$. Find $$P(A \cap B)$$?
    a) 0.2
    b) 0.3
    c) 0.4
    d) 0.1

Explanation: $$P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.4 + 0.5 - 0.7 = 0.2$$.

7. If $$A$$ and $$B$$ are independent and $$P(B) = 0.6$$, $$P(A \cap B) = 0.18$$, find $$P(A)$$?
    a) 0.3
    b) 0.4
    c) 0.5
    d) 0.6

Explanation: $$P(A) = \frac{P(A \cap B)}{P(B)} = \frac{0.18}{0.6} = 0.3$$.

8. A box has 2 red, 3 green, 5 blue balls. If one ball drawn, $$P($$green or blue$$) = ?$$
    a) 1/2
    b) 4/5
    c) 3/5
    d) 1/5

Explanation: $$P(\text{green or blue}) = \frac{3+5}{10} = \frac{8}{10} = \frac{4}{5}$$.

9. Three machines produce 30%, 50%, and 20% of bulbs. Their defective rates are 2%, 3%, and 5%. Find probability a random bulb is defective.
    a) 0.034
    b) 0.03
    c) 0.04
    d) 0.05

Explanation: Total defective $$= 0.3 \times 0.02 + 0.5 \times 0.03 + 0.2 \times 0.05 = 0.034$$.

10. Using above data, if a bulb is defective, find probability it’s from second machine.
    a) 0.44
    b) 0.5
    c) 0.38
    d) 0.6

Explanation: Use Baye’s Theorem: $$\frac{0.5 \times 0.03}{0.034} = 0.44$$.

11. If $$P(A) = \frac{1}{2}$$, $$P(B|A) = \frac{1}{3}$$, find $$P(A \cap B)$$.
    a) 1/6
    b) 1/5
    c) 1/3
    d) 1/2

Explanation: $$P(A \cap B)=P(A) \times P(B|A) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$.

12. Events A and B are mutually exclusive. If $$P(A) = 0.3$$, $$P(B) = 0.4$$, $$P(A \cup B)$$ = ?
    a) 0.7
    b) 0.1
    c) 0.12
    d) 0.0

Explanation: For mutually exclusive, $$P(A \cup B) = P(A) + P(B) = 0.7$$.

13. Probability of drawing face card from deck is?
    a) 3/13
    b) 3/52
    c) 12/52
    d) 1/4

Explanation: Face cards = 12, total cards 52, so $$12/52 = 3/13$$.

14. Two dice rolled, probability that one shows 4 and other shows 5.
    a) 1/18
    b) 1/36
    c) 1/12
    d) 1/9

Explanation: Two outcomes (4,5) or (5,4), total 36; probability = $$2/36 = 1/18$$.

15. In a box, probability of red ball is 0.3, green is 0.5, blue is 0.2. What is probability ball drawn is not green?
    a) 0.3
    b) 0.5
    c) 0.7
    d) 0.2

Explanation: Not green = 1 - 0.5 = 0.5.

16. A card drawn from a pack is an ace or a king. Probability?
    a) 2/13
    b) 1/13
    c) 1/26
    d) 4/52

Explanation: Total aces + kings = 8 cards; $$8/52 = 2/13$$.

17. Two events A and B are independent, $$P(A) = 0.3$$, $$P(B) = 0.4$$. Find $$P(A' \cap B)$$.
    a) 0.28
    b) 0.42
    c) 0.12
    d) 0.1

Explanation: $$P(A') = 0.7$$, $$P(A' \cap B) = P(A') \times P(B) = 0.7 \times 0.4 = 0.28$$.

18. Probability of rain on any day is 0.2. Find probability it rains on exactly one day out of next 2 days.
    a) 0.32
    b) 0.16
    c) 0.36
    d) 0.4

Explanation: $$P(\text{rain on exactly 1 day}) = 2 \times 0.2 \times 0.8 = 0.32$$.

19. If $$P(A) = 0.7$$, $$P(B|A) = 0.4$$, find $$P(A \cap B')$$.
    a) 0.42
    b) 0.28
    c) 0.3
    d) 0.18

Explanation: $$P(A \cap B') = P(A) \times (1-P(B|A)) = 0.7 \times 0.6 = 0.42$$.

20. Sample space partitioned into 3 events $$A_1, A_2, A_3$$ with probabilities 0.2, 0.5, 0.3. $$P(B|A_1) = 0.1$$, $$P(B|A_2) = 0.4$$, $$P(B|A_3) = 0.7$$. $$P(B) =$$ ?
    a) 0.43
    b) 0.4
    c) 0.39
    d) 0.41

Explanation: Use total probability: $$0.2 \times 0.1 + 0.5 \times 0.4 + 0.3 \times 0.7 = 0.43$$.

21 to 40

Here are 20 more multiple-choice numerical questions on probability (21 to 40) covering deeper concepts related to Multiplication Theorem, Conditional Probability, Independent Events, Total Probability, Baye’s Theorem, and Partition of a Sample Space, with explained answers:

21. A box contains 5 white and 3 black balls. If two balls are drawn with replacement, probability both are black?
    a) 9/64
    b) 1/4
    c) 3/8
    d) 1/8

Explanation: $$P = \frac{3}{8} \times \frac{3}{8} = \frac{9}{64}$$.

22. If $$P(A) = 0.5$$, $$P(B) = 0.7$$, and $$P(A \cap B) = 0.35$$, are $$A$$ and $$B$$ independent?
    a) Yes
    b) No
    c) Cannot say
    d) None

Explanation: Since $$0.5 \times 0.7 = 0.35 = P(A \cap B)$$, they are independent.

23. A die is rolled. What is the probability of getting an even number given the number is greater than 3?
    a) 1/3
    b) 1/2
    c) 2/3
    d) 1/6

Explanation: Numbers >3 are 4,5,6; even numbers are 4,6, so $$P=2/3$$.

24. If probability of rain on Monday is 0.3 and on Tuesday is 0.4, independent of Monday, probability it rains both days?
    a) 0.12
    b) 0.7
    c) 0.1
    d) 0.3

Explanation: Independent: multiply $$0.3 \times 0.4 = 0.12$$.

25. A card is drawn. Probability it is a queen or heart?
    a) 4/13
    b) 17/52
    c) 1/4
    d) 1/13

Explanation: $$P(Q) = 4/52$$, $$P(H) = 13/52$$, $$P(Q \cap H) = 1/52$$. Total = $$\frac{4+13-1}{52} = \frac{16}{52}=\frac{4}{13}$$.

26. Three machines A, B, C produce 40%, 35%, 25%. Defect rates 3%, 4%, 5%. Probability a defect is from A?
    a) 0.49
    b) 0.48
    c) 0.43
    d) 0.50

Explanation: Use Bayes: $$P(A|D) = \frac{0.4 \times 0.03}{0.4 \times 0.03 + 0.35 \times 0.04 + 0.25 \times 0.05} = 0.49$$.

27. Events A and B such that $$P(A) = 0.6$$, $$P(B) = 0.5$$, $$P(A \cap B) = 0.3$$, find $$P(A \cup B')$$.
    a) 0.8
    b) 0.9
    c) 0.7
    d) 0.6

Explanation: $$P(A \cup B') = 1 - P(A^c \cap B) = 1 - (1-0.6) \times 0.5 = 1 - 0.2 = 0.8$$.

28. Probability of drawing a red card from deck is?
    a) 1/2
    b) 1/4
    c) 1/3
    d) 1/13

Explanation: Half cards are red (26 out of 52), so 1/2.

29. Two coins tossed. Probability at least one head?
    a) 1/2
    b) 3/4
    c) 1/4
    d) 1/3

Explanation: Only (T,T) fails, so $$1 - 1/4 = 3/4$$.

30. If $$P(A) = 0.7$$, $$P(B) = 0.5$$, find $$P(A \cap B^c)$$ if independent.
    a) 0.35
    b) 0.2
    c) 0.3
    d) 0.4

Explanation: $$P(B^c) = 0.5$$, so $$P(A \cap B^c) = P(A) \times P(B^c) = 0.7 \times 0.5 = 0.35$$.

31. Probability of defective bulb from 3 machines with defect rates 1%, 2%, 4%, and proportions 0.2, 0.5, 0.3?
    a) 0.023
    b) 0.02
    c) 0.025
    d) 0.028

Explanation: $$0.2*0.01 + 0.5*0.02 + 0.3*0.04 = 0.023$$.

32. Two events A and B mutually exclusive with $$P(A) = 0.3$$, $$P(B) = 0.4$$. $$P(A \cap B) = ?$$
    a) 0
    b) 0.7
    c) 0.12
    d) 0.1

Explanation: 0 for mutually exclusive events.

33. Two dice rolled. Probability sum is either 7 or 11?
    a) 8/36
    b) 7/36
    c) 2/9
    d) 9/36

Explanation: Sum 7: 6 ways; sum 11: 2 ways; total 8/36.

34. Probability that an event occurs at least once in 3 independent trials with $$p=0.2$$?
    a) 0.488
    b) 0.6
    c) 0.3
    d) 0.512

Explanation: $$1 - (1-0.2)^3 = 0.488$$.

35. Probability of drawing ace or heart from deck?
    a) 4/13
    b) 1/4
    c) 1/13
    d) 5/13

Explanation: $$4$$ aces $$+ 13$$ hearts $$-$$ 1 ace of hearts = $$4+13-1=16$$, so $$16/52=4/13$$.

36. Probability of getting a 5 or 6 on a die roll?
    a) 1/3
    b) 1/6
    c) 1/2
    d) 1/4

Explanation: 2 favorable outcomes, probability $$2/6 = 1/3$$.

37. If $$P(A) = 0.8$$, $$P(B|A) = 0.1$$, find $$P(A^c \cup B)$$.
    a) 0.82
    b) 0.18
    c) 0.26
    d) 0.72

Explanation: $$P(A^c \cup B) = 1 - P(A \cap B^c) = 1 - P(A)(1-P(B|A)) = 1-0.8 \times 0.9=0.28$$.

38. A box contains 4 defective out of 10 bulbs. 2 bulbs drawn with replacement. Probability none defective?
    a) 0.36
    b) 0.6
    c) 0.16
    d) 0.4

Explanation: $$P(non-defective)=6/10$$, so $$ (6/10)^2=0.36$$.

39. Probability of selecting a queen or a red card from deck?
    a) 4/13
    b) 1/2
    c) 1/4
    d) 3/13

Explanation: Same as question 25, answer $$4/13$$.

40. Probability that a randomly chosen card is king given it is a face card?
    a) 1/3
    b) 1/4
    c) 1/2
    d) 2/3

Explanation: 12 face cards, 4 kings, so $$4/12 = 1/3$$.
Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.