Loading...

cpy pst prnt kybrd kys rght clk dslb

ad banner

LED and LCD, Solar cell, diode as circuit element, Rectifiers: Half Wave, full wave and bridge rectifier | MCQs

## LED and LCD

**1. Which semiconductor material emits infrared light in LEDs?**  
a) GaAsP  
b) AlGaP  
c) GaAs  
d) SiC  
**Answer: c) GaAs** [1]
**Explanation:** GaAs produces infrared light at 850-950 nm wavelengths due to its bandgap properties, while others emit visible colors like red, green, or blue. [1]

**2. What voltage range do LCDs typically operate at?**  
a) 1-3V  
b) 3-12V  
c) 12-24V  
d) 24-50V  
**Answer: b) 3-12V** [2]
**Explanation:** LCDs function efficiently between 3V and 12V, consuming low average current (1.2 µA to 6 µA) and producing minimal heat. [2]

**3. How do multi-color LEDs produce different colors?**  
a) Single PN junction  
b) Two PN junctions in anti-parallel  
c) External filters  
d) Temperature variation  
**Answer: b) Two PN junctions in anti-parallel** [1]
**Explanation:** Applying positive or negative potential activates one of the two junctions, emitting light from the forward-biased diode. [1]

**4. What blocks light in LCD operation?**  
a) Emitting crystals  
b) Liquid crystals altering alignment  
c) Backlight only  
d) Magnetic fields  
**Answer: b) Liquid crystals altering alignment** [2]
**Explanation:** Energized liquid crystals control light passage through pixels for color display, unlike light-emitting technologies. [2]

**5. Which LED color is absent in standard LED TV panels?**  
a) Red  
b) Green  
c) Blue  
d) Cyan  
**Answer: d) Cyan** [3]
**Explanation:** LED TVs use red, green, blue sub-pixels; cyan is not a primary color in these panels. [3]

**6. What causes thermal runaway in LEDs?**  
a) Constant current  
b) Forward voltage change with temperature  
c) Low voltage AC  
d) High frequency  
**Answer: b) Forward voltage change with temperature** [3]
**Explanation:** Temperature shifts forward voltage, risking burnout unless drivers maintain constant current. [3]

**7. What is the response time for LCD operation?**  
a) 10 ms  
b) 100 ms  
c) 1 s  
d) 10 s  
**Answer: b) 100 ms** [2]
**Explanation:** Fast 100 ms opening time enables quick pixel changes without geometric distortion. [2]

**8. Which LCD type offers wide gamut with quantum dots?**  
a) TN  
b) IPS  
c) Quantum Dot LCD  
d) AFFS  
**Answer: c) Quantum Dot LCD** [4]
**Explanation:** Quantum dot filters enhance color range for high-dynamic-range displays. [4]

**9. What do LED drivers primarily do?**  
a) Increase voltage  
b) Rectify AC to DC at low voltage  
c) Generate heat  
d) Block light  
**Answer: b) Rectify AC to DC at low voltage** [1]
**Explanation:** Drivers convert high-voltage AC to precise low-voltage DC for LED stability. [1]

**10. Why are LCDs lighter than CRTs?**  
a) Heavy crystals  
b) Thinner design, low radiation  
c) Magnetic dependency  
d) High power use  
**Answer: b) Thinner design, low radiation** [2]
**Explanation:** LCDs avoid bulky electron guns, working with CMOS ICs unaffected by fields. [2]

## Solar Cell

**1. What is the maximum power point (MPP) in a solar cell?**  
a) Zero current  
b) V-I point maximizing power  
c) Open circuit  
d) Short circuit  
**Answer: b) V-I point maximizing power** [5]
**Explanation:** MPP on the V-I curve gives peak V times I output for optimal load efficiency. [5]

**2. How does light intensity affect solar cell photocurrent?**  
a) Inversely proportional  
b) Directly proportional  
c) No effect  
d) Logarithmic only  
**Answer: b) Directly proportional** [5]
**Explanation:** More photons from higher intensity excite more electron-hole pairs, boosting current. [5]

**3. What is the photovoltaic effect basis?**  
a) Heat generation  
b) Light producing electricity in semiconductors  
c) Magnetic induction  
d) Chemical reaction  
**Answer: b) Light producing electricity in semiconductors** [5]
**Explanation:** Photons absorbed create electron-hole pairs separated by junction field for current. [5]

**4. Typical open-circuit voltage for silicon solar cell?**  
a) 0.1 V  
b) 0.5-0.6 V  
c) 2 V  
d) 5 V  
**Answer: b) 0.5-0.6 V** [5]
**Explanation:** Single-junction silicon cells produce about 0.5-0.6 V max under light. [5]

**5. Common materials for solar cells include?**  
a) Copper only  
b) Silicon, CdTe, CIGS  
c) Aluminum  
d) Plastic  
**Answer: b) Silicon, CdTe, CIGS** [5]
**Explanation:** Semiconductors like silicon enable photovoltaic conversion efficiently. [5]

**6. Effect of light intensity on open-circuit voltage?**  
a) Decreases  
b) Increases logarithmically  
c) Constant  
d) Halves  
**Answer: b) Increases logarithmically** [5]
**Explanation:** Higher intensity raises charge separation, logarithmic Voc rise. [5]

**7. What separates charges in solar cells?**  
a) External battery  
b) Built-in junction electric field  
c) Resistor  
d) Capacitor  
**Answer: b) Built-in junction electric field** [5]
**Explanation:** Field at p-n junction directs electrons and holes to terminals. [5]

**8. Silicon solar cell efficiency factor?**  
a) Independent of light  
b) Proportional to photon energy absorption  
c) Fixed at 100%  
d) Inversely to temperature  
**Answer: b) Proportional to photon energy absorption** [5]
**Explanation:** Absorbed photons above bandgap generate usable carriers. [5]

**9. Dark current in photodiode without light?**  
a) High  
b) Negligible  
c) Maximum  
d) Zero exactly  
**Answer: b) Negligible** [6]
**Explanation:** Reverse current minimal absent incident light. [6]

**10. Recombination in forward-biased diode produces?**  
a) Nothing  
b) Heat, light, radiation  
c) Only current  
d) Voltage drop  
**Answer: b) Heat, light, radiation** [6]
**Explanation:** Electron-hole recombination releases energy in various forms. [6]

## Diode as Circuit Element

**1. Diode forward bias drop for silicon?**  
a) 0.3 V  
b) 0.7 V  
c) 1.4 V  
d) 0 V  
**Answer: b) 0.7 V** [6]
**Explanation:** Silicon diodes drop ~0.7 V; germanium ~0.3 V in forward bias. [6]

**2. Purpose of zener diode Q-point?**  
a) Forward conduction  
b) Voltage regulation at breakdown  
c) Switching only  
d) Light emission  
**Answer: b) Voltage regulation at breakdown** [6]
**Explanation:** Zener maintains constant voltage across it in reverse breakdown. [6]

**3. In anti-parallel diodes, voltage drop cancels source?**  
a) Current flows  
b) Zero drop across resistance, zero current  
c) Full conduction  
d) Breakdown  
**Answer: b) Zero drop across resistance, zero current** [6]
**Explanation:** Combined drops equal source voltage, no resistor current. [6]

**4. Photodiode current without light?**  
a) Photocurrent  
b) Dark current, negligible  
c) Zener current  
d) Forward current  
**Answer: b) Dark current, negligible** [6]
**Explanation:** Minimal reverse saturation current absent illumination. [6]

**5. Diode primary function?**  
a) Amplify  
b) One-way current control  
c) Store charge  
d) Oscillate  
**Answer: b) One-way current control** [6]
**Explanation:** Allows forward, blocks reverse current flow. [6]

**6. Example diode circuit current calculation?**  
a) Ignores drops  
b) Accounts for 0.7 V Si, 0.3 V Ge  
c) Assumes zero drop  
d) Uses breakdown  
**Answer: b) Accounts for 0.7 V Si, 0.3 V Ge** [6]
**Explanation:** Drops subtracted from supply for accurate current. [6]

**7. Capacitor-diode circuit identification?**  
a) All resistors  
b) Capacitors and diodes mix  
c) Only diodes  
d) Inductors  
**Answer: b) Capacitors and diodes mix** [6]
**Explanation:** Common in filters, rectifiers with specific roles. [6]

**8. Forward recombination effect?**  
a) Blocks light  
b) Produces heat/light/radiation  
c) Increases resistance  
d) No energy  
**Answer: b) Produces heat/light/radiation** [6]
**Explanation:** Carrier annihilation releases photon/heat/phonon energy. [6]

**9. Diode in rectifier role?**  
a) AC to AC  
b) AC to DC conversion  
c) DC to AC  
d) Filtering only  
**Answer: b) AC to DC conversion** [6]
**Explanation:** Passes one polarity half-cycles. [6]

**10. Cut-in voltage effect at 1 kHz?**  
a) Irrelevant  
b) Determines conduction timing  
c) Halves frequency  
d) Doubles voltage  
**Answer: b) Determines conduction timing** [6]
**Explanation:** 0.7 V threshold sets forward bias onset. [6]

## Rectifiers: Half Wave, Full Wave, and Bridge

**1. Half-wave rectifier efficiency max?**  
a) 81.2%  
b) 40.6%  
c) 100%  
d) 50%  
**Answer: b) 40.6%** [7]
**Explanation:** Uses only half AC cycle, lower DC output relative to RMS. [7]

**2. Full-wave rectifier efficiency max?**  
a) 40.6%  
b) 81.2%  
c) 90%  
d) 46%  
**Answer: b) 81.2%** [7]
**Explanation:** Utilizes both AC halves for higher DC power conversion. [7]

**3. Bridge rectifier TUF vs center-tapped?**  
a) Worse  
b) Better  
c) Equal  
d) Half  
**Answer: b) Better** [7]
**Explanation:** Bridge uses full transformer winding efficiently without tap. [7]

**4. Center-tapped PIV vs bridge?**  
a) Lower  
b) Higher  
c) Same  
d) Double bridge  
**Answer: b) Higher** [7]
**Explanation:** Center-tapped diodes face twice peak voltage. [7]

**5. Bridge rectifier diodes needed?**  
a) 1  
b) 2  
c) 4  
d) 3  
**Answer: c) 4** [8]
**Explanation:** Four diodes conduct alternately for full rectification. [8]

**6. Full-wave average voltage for 66 V peak?**  
a) 21 V  
b) 42 V  
c) 66 V  
d) 33 V  
**Answer: b) 42 V** [9]
**Explanation:** Average = (2 Vm / π) ≈ 0.637 Vm for full-wave. [9]

**7. Half-wave uses?**  
a) Both cycles  
b) Positive half only  
c) Negative half  
d) Full with filter  
**Answer: b) Positive half only** [7]
**Explanation:** Single diode passes one polarity. [7]

**8. Ripple factor lowest in?**  
a) Half-wave  
b) Full-wave  
c) Bridge  
d) None  
**Answer: b) Full-wave** [7]
**Explanation:** Both halves smooth output better. [7]

**9. Bridge rectification efficiency?**  
a) 40.6%  
b) 81.2%  
c) 46%  
d) 90%  
**Answer: b) 81.2%** [8]
**Explanation:** Measures DC content presence, same as full-wave. [8]

**10. Capacitive filter in rectifier?**  
a) High-pass  
b) Low-pass, smooths ripple  
c) Blocks DC  
d) Amplifies  
**Answer: b) Low-pass, smooths ripple** [7]
**Explanation:** Charges to peak, discharges slowly through load. [7]

more

## LED and LCD (Additional Set)

**1. What determines the direction of electric field in an LCD?**  
a) Magnetic field  
b) Electric field  
c) Electromagnetic field  
d) Gallois field  
**Answer: b) Electric field** [5]
**Explanation:** Electric field induced by voltage changes liquid crystal molecule orientation for light modulation. [5]

**2. How many LEDs in a 7-segment display?**  
a) 8  
b) 7  
c) 10  
d) 9  
**Answer: b) 7** [5]
**Explanation:** Seven LEDs form segments to display decimal numerals efficiently. [5]

**3. What is the backplane in LCD?**  
a) DC voltage between segment and common  
b) AC voltage between segment and common  
c) Power consumption amount  
d) Intensity adjuster  
**Answer: b) AC voltage between segment and common** [5]
**Explanation:** Backplane applies AC to drive segments via EX-OR gates. [5]

**4. LCD displays images by?**  
a) Emitting light  
b) Blocking white light  
c) Reflecting only  
d) Generating heat  
**Answer: b) Blocking white light** [3]
**Explanation:** Voltage alters liquid crystal properties to control light passage through polarizers. [3]

**5. LED TVs offer richer color than LCD panels due to?**  
a) No backlight  
b) Modified white light color  
c) Thicker panels  
d) Higher power  
**Answer: b) Modified white light color** [6]
**Explanation:** Backlight adjustment compensates for LCD limitations in color reproduction. [6]

**6. Which effect produces electro-optical changes in LCD?**  
a) Thermal  
b) Piezoelectric  
c) Electro-optical  
d) Photoelectric  
**Answer: c) Electro-optical** [5]
**Explanation:** Voltage orients molecules along or perpendicular to field based on chemical structure. [5]

**7. LCD advantage over CRT?**  
a) Geometric distortion  
b) Affected by magnetic fields  
c) High power and heat  
d) No radiation, thin design  
**Answer: d) No radiation, thin design** [3]
**Explanation:** Compact structure with low emission and field immunity. [3]

**8. LED vs LCD TV thickness?**  
a) LED thicker  
b) LCD thinner  
c) Equal  
d) LED requires more power only  
**Answer: a) LED thicker** [3]
**Explanation:** LED panels achieve thinner profiles than traditional LCDs. [3]

**9. LCD pixel control mechanism?**  
a) Heat  
b) Twisted crystals blocking light  
c) Direct emission  
d) Magnetic twist  
**Answer: b) Twisted crystals blocking light** [4]
**Explanation:** Electricity untwists crystals to allow or block backlight selectively. [4]

**10. Refresh rate range for LCD operation?**  
a) 1-10 Hz  
b) 30-60 Hz  
c) 100-200 Hz  
d) DC only  
**Answer: b) 30-60 Hz** [1]
**Explanation:** Standard rates prevent flicker in display updates. [1]

## Solar Cell (Additional Set)

**1. Which factor most limits silicon solar cell efficiency?**  
a) Perfect absorption  
b) Bandgap mismatch with spectrum  
c) Infinite carriers  
d) Zero recombination  
**Answer: b) Bandgap mismatch with spectrum** [11]
**Explanation:** Silicon bandgap misses high/low energy photons, capping theoretical efficiency. [11]

**2. Fill factor measures?**  
a) Maximum power ratio to Voc Isc  
b) Open circuit only  
c) Current density  
d) Area coverage  
**Answer: a) Maximum power ratio to Voc Isc** [12]
**Explanation:** Indicates curve squareness and quality near ideal rectangle. [12]

**3. Temperature effect on solar cell voltage?**  
a) Increases linearly  
b) Decreases  
c) No change  
d) Oscillates  
**Answer: b) Decreases** [11]
**Explanation:** Higher temperature reduces bandgap, lowering open-circuit voltage. [11]

**4. Monocrystalline vs polycrystalline efficiency?**  
a) Equal  
b) Mono higher  
c) Poly higher  
d) Both 100%  
**Answer: b) Mono higher** [12]
**Explanation:** Fewer defects in single crystal improve carrier collection. [12]

**5. Series resistance impact on IV curve?**  
a) No effect  
b) Reduces slope near Voc  
c) Increases fill factor  
d) Shifts left  
**Answer: b) Reduces slope near Voc** [12]
**Explanation:** Limits current at high voltage, lowering power output. [12]

**6. Anti-reflection coating purpose?**  
a) Increase reflection  
b) Minimize light loss  
c) Heat dissipation  
d) Color change  
**Answer: b) Minimize light loss** [11]
**Explanation:** Reduces Fresnel reflection at air-semiconductor interface. [11]

**7. Shunt resistance low value causes?**  
a) Ideal curve  
b) Soft knee at Isc  
c) Higher Voc  
d) No power loss  
**Answer: b) Soft knee at Isc** [12]
**Explanation:** Leaks current around junction, reducing fill factor. [12]

**8. Spectral response peak for silicon?**  
a) UV  
b) IR  
c) 800-1000 nm  
d) Visible only  
**Answer: c) 800-1000 nm** [11]
**Explanation:** Matches bandgap for optimal photon absorption. [11]

**9. Bypass diode prevents?**  
a) Overvoltage  
b) Hot spots in shaded cells  
c) Efficiency gain  
d) Current block  
**Answer: b) Hot spots in shaded cells** [12]
**Explanation:** Provides path for reverse current in modules. [12]

**10. Quantum efficiency definition?**  
a) Total power  
b) Carriers per incident photon  
c) Voltage gain  
d) Area factor  
**Answer: b) Carriers per incident photon** [11]
**Explanation:** Measures internal conversion effectiveness. [11]

## Diode as Circuit Element (Additional Set)

**1. Reverse recovery time affects?**  
a) Forward conduction  
b) Switching speed  
c) Breakdown voltage  
d) Light emission  
**Answer: b) Switching speed** [13]
**Explanation:** Time to sweep out stored charge during turn-off. [13]

**2. Schottky diode advantage?**  
a) High forward drop  
b) Fast switching, low drop  
c) High breakdown  
d) Light emitting  
**Answer: b) Fast switching, low drop** [13]
**Explanation:** Metal-semiconductor junction avoids minority carrier storage. [13]

**3. Avalanche vs Zener breakdown?**  
a) Same mechanism  
b) Avalanche impact ionization, Zener tunneling  
c) Both tunneling  
d) Both thermal  
**Answer: b) Avalanche impact ionization, Zener tunneling** [13]
**Explanation:** Occurs at different voltage ranges and doping levels. [13]

**4. Varactor diode used for?**  
a) Rectification  
b) Variable capacitance tuning  
c) LED  
d) Clamping  
**Answer: b) Variable capacitance tuning** [13]
**Explanation:** Reverse bias width modulates junction capacitance. [13]

**5. Diode clipping circuit does?**  
a) Amplifies  
b) Limits voltage peaks  
c) Inverts  
d) Filters  
**Answer: b) Limits voltage peaks** [13]
**Explanation:** Clamps signal above/below diode thresholds. [13]

**6. Germanium diode forward voltage?**  
a) 0.7 V  
b) 0.3 V  
c) 1.2 V  
d) 0 V  
**Answer: b) 0.3 V** [13]
**Explanation:** Lower bandgap than silicon results in smaller drop. [13]

**7. PIN diode application?**  
a) Light emission  
b) RF switching/attenuation  
c) Voltage regulation  
d) Rectification only  
**Answer: b) RF switching/attenuation** [13]
**Explanation:** Wide intrinsic layer for low capacitance, high power. [13]

**8. Dynamic resistance of diode?**  
a) Infinite forward  
b) dV/dI small in forward  
c) Zero reverse  
d) Constant  
**Answer: b) dV/dI small in forward** [13]
**Explanation:** Measures nonlinearity; low value indicates good conduction. [13]

**9. Tunnel diode characteristic?**  
a) Normal rectification  
b) Negative resistance region  
c) High forward drop  
d) Slow switching  
**Answer: b) Negative resistance region** [13]
**Explanation:** Heavy doping enables quantum tunneling. [13]

**10. LED forward voltage depends on?**  
a) Current only  
b) Material bandgap/color  
c) Size alone  
d) Temperature fixed  
**Answer: b) Material bandgap/color** [14]
**Explanation:** Energy gap sets photon wavelength and voltage. [14]

## Rectifiers (Additional Set)

**1. Ripple factor half-wave unfiltered?**  
a) 0.48  
b) 1.21  
c) 0.04  
d) Infinite  
**Answer: b) 1.21** [15]
**Explanation:** High due to single half-cycle pulses. [15]

**2. Center-tap full-wave diodes?**  
a) 4  
b) 2  
c) 1  
d) 3  
**Answer: b) 2** [15]
**Explanation:** Each half uses one diode from tapped secondary. [15]

**3. Bridge rectifier advantage?**  
a) Needs center tap  
b) No tap, uses full winding  
c) Lower PIV  
d) Single diode  
**Answer: b) No tap, uses full winding** [15]
**Explanation:** Higher transformer utilization factor. [15]

**4. Form factor full-wave?**  
a) 1.11  
b) 1.57  
c) 1.8  
d) 1  
**Answer: a) 1.11** [16]
**Explanation:** RMS to average voltage ratio lower than half-wave. [16]

**5. Peak inverse voltage bridge?**  
a) 2 Vm  
b) Vm  
c) Vm/2  
d) Infinite  
**Answer: b) Vm** [15]
**Explanation:** Each diode sees peak input once. [15]

**6. Inductor filter best with?**  
a) Half-wave  
b) Full-wave  
c) Reduces ripple more  
d) Increases frequency  
**Answer: b) Full-wave** [15]
**Explanation:** Higher pulse rate aids smoothing. [15]

**7. Full-wave output frequency for 50 Hz AC?**  
a) 50 Hz  
b) 100 Hz  
c) 25 Hz  
d) DC pure  
**Answer: b) 100 Hz** [16]
**Explanation:** Both halves rectified double frequency. [16]

**8. Transformer utilization bridge vs center-tap?**  
a) Half  
b) Double  
c) Equal  
d) None  
**Answer: b) Double** [15]
**Explanation:** Full secondary voltage used. [15]

**9. Half-wave with capacitor filter ripple?**  
a) Lowest  
b) Highest among types  
c) Zero  
d) Same as full  
**Answer: b) Highest among types** [15]
**Explanation:** Longer discharge time between pulses. [15]

**10. Efficiency formula rectifier?**  
a) Pdc / Pac  
b) (8/π²) * 100% for full-wave  
c) 50% fixed  
d) Ripple dependent  
**Answer: b) (8/π²) * 100% for full-wave** [16]
**Explanation:** Theoretical maximum 81.2% assuming ideal diodes. [16]


https://www.perplexity.ai/search/led-and-lcd-solar-cell-diode-a-u9Okb1FXSb6Ptgg0nBhcXw#2
Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.