Loading...

cpy pst prnt kybrd kys rght clk dslb

ad banner

V-I characteristics, Zener diode, voltage regulation, tunnel diode | MCQs

V-I characteristics, Zener diode, voltage regulation, tunnel diode 

## V-I Characteristics (10 MCQs)

1. In the V-I characteristics of a PN junction diode, the knee point represents:  
   a) Reverse breakdown  
   b) Forward conduction start  
   c) Zero bias  
   d) Saturation current  
   **Answer: b) Forward conduction start**  
   *Explanation: The knee or cut-in voltage is where current rises sharply in forward bias due to narrowing depletion region, around 0.7V for silicon.* [1]

2. Under reverse bias in V-I curve, current remains nearly constant up to breakdown because:  
   a) Majority carriers flow  
   b) Only minority carriers (saturation current) flow  
   c) Depletion widens  
   d) Barrier decreases  
   **Answer: b) Only minority carriers (saturation current) flow**  
   *Explanation: Reverse bias drifts minority carriers, producing small leakage current independent of voltage until breakdown.* [2]

3. Forward current in V-I characteristics is primarily due to:  
   a) Drift of minority carriers  
   b) Diffusion of majority carriers  
   c) Avalanche effect  
   d) Zener tunneling  
   **Answer: b) Diffusion of majority carriers**  
   *Explanation: Forward bias reduces barrier, allowing majority carriers to diffuse across junction.* [1]

4. The slope of V-I curve in forward bias indicates:  
   a) High resistance  
   b) Low dynamic resistance  
   c) Infinite resistance  
   d) Zero resistance  
   **Answer: b) Low dynamic resistance**  
   *Explanation: Steep slope shows diode behaves as low resistance path post-knee voltage.* [1]

5. At zero bias, V-I characteristic shows:  
   a) High forward current  
   b) Small diffusion current  
   c) Reverse saturation current  
   d) Breakdown  
   **Answer: b) Small diffusion current**  
   *Explanation: Few majority carriers overcome barrier, creating tiny current.* [1]

6. Reverse breakdown in V-I curve occurs due to:  
   a) Narrow depletion  
   b) Avalanche or Zener effect  
   c) Majority diffusion  
   d) Forward bias  
   **Answer: b) Avalanche or Zener effect**  
   *Explanation: High reverse voltage causes carrier multiplication or tunneling.* [2]

7. Silicon diode's forward knee voltage in V-I is about:  
   a) 0.2V  
   b) 0.7V  
   c) 1.1V  
   d) -0.7V  
   **Answer: b) 0.7V**  
   *Explanation: Barrier potential for silicon is ~0.7V where conduction begins.* [1]

8. V-I curve asymmetry shows diode is:  
   a) Linear device  
   b) Non-linear rectifier  
   c) Resistor  
   d) Capacitor  
   **Answer: b) Non-linear rectifier**  
   *Explanation: Conducts one way, blocks other, ideal for rectification.* [1]

9. In reverse bias quadrant of V-I, current is:  
   a) Exponential  
   b) Nearly zero (microamperes)  
   c) Linear  
   d) High  
   **Answer: b) Nearly zero (microamperes)**  
   *Explanation: Only minority carrier drift current flows.* [2]

10. Dynamic resistance from V-I slope is lowest in:  
    a) Reverse bias  
    b) Forward conduction  
    c) Zero bias  
    d) Breakdown  
    **Answer: b) Forward conduction**  
    *Explanation: Post-knee, small voltage change causes large current rise.* [1]

## Zener Diode (10 MCQs)

1. Zener diode operates in breakdown without damage due to:  
   a) Light doping  
   b) Heavy doping, narrow depletion  
   c) Forward bias only  
   d) Avalanche only  
   **Answer: b) Heavy doping, narrow depletion**  
   *Explanation: Heavy doping enables Zener or avalanche at precise voltage.* [3]

2. Zener breakdown occurs at:  
   a) High voltages (>5V)  
   b) Low voltages (<5V)  
   c) Forward bias  
   d) Zero bias  
   **Answer: b) Low voltages (<5V)**  
   *Explanation: Quantum tunneling in heavily doped junction at low reverse V.* [3]

3. In reverse bias, Zener maintains:  
   a) Constant current  
   b) Constant voltage  
   c) Increasing resistance  
   d) Zero current  
   **Answer: b) Constant voltage**  
   *Explanation: Breakdown voltage (Vz) stays fixed despite current changes.* [3]

4. Zener effect involves:  
   a) Carrier multiplication  
   b) Electron tunneling  
   c) Diffusion  
   d) Drift only  
   **Answer: b) Electron tunneling**  
   *Explanation: Electrons tunnel through narrow barrier in heavy doping.* [3]

5. Avalanche breakdown in Zener is for:  
   a) Low Vz  
   b) High Vz (>5V)  
   c) Forward  
   d) No bias  
   **Answer: b) High Vz (>5V)**  
   *Explanation: Impact ionization multiplies carriers at higher voltages.* [3]

6. Zener symbol differs by:  
   a) Arrow  
   b) Bent lines at cathode  
   c) Circle  
   d) Dot  
   **Answer: b) Bent lines at cathode**  
   *Explanation: Indicates reverse breakdown operation.* [3]

7. Minimum Zener current for regulation is:  
   a) Iz max  
   b) Iz min (knee current)  
   c) If  
   d) Zero  
   **Answer: b) Iz min (knee current)**  
   *Explanation: Below Iz min, voltage regulation fails.* [4]

8. Zener doping is:  
   a) Light p, heavy n  
   b) Heavily both sides  
   c) Light both  
   d) Heavy p, light n  
   **Answer: b) Heavily both sides**  
   *Explanation: Creates thin depletion for sharp breakdown.* [3]

9. Zener forward behaves like:  
   a) Regular diode  
   b) Open circuit  
   c) Resistor  
   d) Capacitor  
   **Answer: a) Regular diode**  
   *Explanation: Conducts normally in forward bias.* [3]

10. Breakdown mechanism depends on:  
    a) Temperature only  
    b) Doping level  
    c) Size  
    d) Shape  
    **Answer: b) Doping level**  
    *Explanation: Heavy doping favors Zener, lighter favors avalanche.* [3]

## Voltage Regulation (10 MCQs)

1. Zener regulator uses diode in:  
   a) Forward bias  
   b) Reverse breakdown  
   c) Zero bias  
   d) Series  
   **Answer: b) Reverse breakdown**  
   *Explanation: Maintains constant Vz across load despite Vin changes.* [4]

2. Series resistor in Zener regulator limits:  
   a) Load current  
   b) Zener current  
   c) Output voltage  
   d) Input power  
   **Answer: b) Zener current**  
   *Explanation: Prevents excess Iz beyond max rating.* [4]

3. Voltage regulation formula: %VR =  
   a) (Vnl - Vfl)/Vfl *100  
   b) (Vnl - Vfl)/Vnl *100  
   c) (Vfl - Vnl)/Vnl *100  
   d) Vnl/Vfl  
   **Answer: b) (Vnl - Vfl)/Vnl *100**  
   *Explanation: Measures no-load to full-load voltage drop percentage.* [5]

4. For regulation, load current range: IL max =  
   a) Iz min - Iz max  
   b) (Vin - Vz)/Rs - Iz min  
   c) Iz max  
   d) Zero  
   **Answer: b) (Vin - Vz)/Rs - Iz min**  
   *Explanation: Ensures Iz stays between min and max.* [4]

5. Shunt regulator configuration has Zener:  
   a) Series with load  
   b) Parallel to load  
   c) Before Rs  
   d) After load  
   **Answer: b) Parallel to load**  
   *Explanation: Excess current shunts through Zener.* [4]

6. Regulation improves with:  
   a) High Zener dynamic resistance  
   b) Low Zener dynamic resistance  
   c) No Rs  
   d) High load  
   **Answer: b) Low Zener dynamic resistance**  
   *Explanation: Sharper Vz constancy.* [5]

7. Iz max determines:  
   a) Min Rs  
   b) Max Rs  
   c) Load max  
   d) Vin min  
   **Answer: a) Min Rs**  
   *Explanation: Rs >= (Vin max - Vz)/Iz max.* [4]

8. Poor regulation if load current < :  
   a) Iz max  
   b) Iz min  
   c) IL max  
   d) Zero  
   **Answer: b) Iz min**  
   *Explanation: Zener leaves breakdown region.* [4]

9. In regulator, cathode connects to:  
   a) Ground  
   b) Positive supply  
   c) Load negative  
   d) Rs end  
   **Answer: b) Positive supply**  
   *Explanation: Reverse biases Zener.* [3]

10. % Regulation ideal is:  
    a) High  
    b) Zero  
    c) Negative  
    d) 50%  
    **Answer: b) Zero**  
    *Explanation: Constant output voltage.* [5]

## Tunnel Diode (10 MCQs)

1. Tunnel diode exhibits:  
   a) Positive resistance only  
   b) Negative differential resistance  
   c) Zero resistance  
   d) Infinite resistance  
   **Answer: b) Negative differential resistance**  
   *Explanation: Current decreases with voltage increase in region.* [3]

2. Tunnel diode works on:  
   a) Diffusion  
   b) Quantum tunneling  
   c) Avalanche  
   d) Drift  
   **Answer: b) Quantum tunneling**  
   *Explanation: Electrons tunnel through thin barrier.* [6]

3. Depletion in tunnel diode is thin due to:  
   a) Light doping  
   b) Heavy doping, abrupt junction  
   c) Long life  
   d) High temp  
   **Answer: b) Heavy doping, abrupt junction**  
   *Explanation: Allows tunneling at low V.* [6]

4. Material for tunnel diode is usually:  
   a) Silicon  
   b) Germanium  
   c) GaAs  
   d) All  
   **Answer: b) Germanium**  
   *Explanation: Best tunneling properties.* [6]

5. Used in:  
   a) Low freq  
   b) Microwave oscillators/amplifiers  
   c) Power supply  
   d) LED  
   **Answer: b) Microwave oscillators/amplifiers**  
   *Explanation: Negative resistance enables oscillation.* [6]

6. In forward bias, fermi level:  
   a) P lower than N  
   b) P higher than N initially  
   c) Equal  
   d) Irrelevant  
   **Answer: b) P higher than N initially**  
   *Explanation: Enables valence to conduction band tunneling.* [6]

7. Negative resistance region allows:  
   a) Rectification  
   b) Oscillation  
   c) Regulation  
   d) Clamping  
   **Answer: b) Oscillation**  
   *Explanation: With LC, generates high freq.* [3]

8. Peak to valley current ratio high in:  
   a) Poor tunnel diodes  
   b) Good ones  
   c) Zener  
   d) PN regular  
   **Answer: b) Good ones**  
   *Explanation: Sharp NDR characteristic.* [7]

9. Tunneling from:  
   a) N conduction to P conduction  
   b) N conduction to P valence  
   c) P valence to N conduction  
   d) Both b and c  
   **Answer: b) N conduction to P valence**  
   *Explanation: Band overlap due to heavy doping.* [6]

10. Frequency range:  
    a) Audio  
    b) Microwave  
    c) DC only  
    d) RF low  
    **Answer: b) Microwave**  
    *Explanation: Low capacitance, fast switching.* [6]

https://www.perplexity.ai/search/pn-junction-10-mcqs-answer-rYBKeNuvR_Wr5sM5DCDOiw#3
Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.